

USING NEURAL NETWORKS FOR

ESTIMATING CRUISE MISSILE
RELIABILITY

THESIS

Donald L. Hoffman, Captain, USAF

AFIT/GOR/ENS/03-10

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government.

AFIT/GOR/ENS/03-10

USING NEURAL NETWORKS FOR
ESTIMATING CRUISE MISSILE

RELIABILITY

THESIS

Presented to the Faculty

Department of Operations Research

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Donald L. Hoffman, BS

Captain, USAF

March 2003

APPROVED FOR PUBLIC RFELEASE; DISTRIBUTION UNLIMITED.

AFIT/GOR/ENS/03-10

USING NEURAL N ETWORKS FOR
ESTIMATING CRUISE MISSILE

RELIABILITY

Donald L. Hoffman, BS
Captain, USAF

Approved:

Kenneth W. Bauer (Chairman)

Stephen P. Chambal (Member)

date

date

iv

Acknowledgments

I would like to express my sincere appreciation to my faculty advisor, Dr Kenneth

Bauer, and thesis reader, Dr Stephen Chambal, for their guidance and support throughout

the course of this thesis effort. I would also like to thank my sponsor, Mr. Al Montalvo,

ACC/DONO for the continual support. I am further indebted to the many persons

responsible for collecting the data over the years and those who took the time to explain

the details of the collected measures. A special thanks is extended to Mike Bredehoeft

and Major R. Nicole Benton for their insight and readiness to answer my many questions.

 Donald L. Hoffman

v

Table of Contents

Page

Acknowledgments.. iv

List of Figures ... vii

List of Tables ... ix

Abstract ... x

I. Introduction .. 1

General Issue... 1
Problem Statement .. 1
Objective ... 2
Background... 2

II. Literature Review.. 7

SLBM.. 7
TLAM ... 9
ICBM .. 10
ALCM/ACM... 11

Logistic Regression... 21
Feed-Forward Neural Network. .. 22
Radial Basis Function Network. ... 23
Generalized Ensemble Method. .. 26

III. Methodology.. 28

Add Definition to Flight Test Reliability.. 28
Data Reduction.. 30
Model Feature Selection ... 32
Matlab Prototype... 39
Code Validation .. 43
Fusion.. 46
Conversion to VBA... 48

IV. Model Adequacy.. 49

V. Conclusions... 55

vi

Page
Appendix A: Acronyms ... 57

Appendix B: Notional Flight Test Data ... 61

Appendix C: Ground Test Data ... 62

Appendix D: SAS Factor Analysis Output .. 63

Appendix E: MATLAB Logistic Regression Code ... 64

Appendix F: Matlab Reliability Model Code .. 66

Appendix G: Matlab Validation Code ... 76

Appendix H: VBA Reliability Model (AARES) Code.. 87

Bibliography ... 108

Vita.. 109

vii

List of Figures

Page
Figure 1: MIT/SIT - Level 1Maintenance Testing .. 5

Figure 2: INE Auto-cal - Level 1Maintenance Events .. 6

Figure 3: ICBM Reliability Model (Lindblad, 2001: 8) .. 11

Figure 4: Flight Test Regression Plot .. 14

Figure 5: Simple Neural Network (Bauer, 2002)... 16

Figure 6: Generalization Training.. 18

Figure 7: Prediction Training... 18

Figure 8: Logistic Regression Network ... 21

Figure 9: Feed-Forward Neural Network .. 22

Figure 10: Radial Basis Function Network.. 24

Figure 11: Mission Sequence (TO 21-AG129-2-1: 1-30 – 1-34) 29

Figure 12: 3-Factor Backwards Regression Results .. 38

Figure 13: Reliability Model Block Diagram .. 40

Figure 14: Current Year Reliability Estimates... 41

Figure 15: 24-month Reliability Prediction ... 42

Figure 16: Logistic Regression Validation .. 44

Figure 17: Random Input Data Classification ... 45

Figure 18: Generalized Ensemble Method (24-month Prediction Example)................... 47

Figure 19: Model Starting Worksheet.. 49

Figure 20: User Interaction Dialog Box ...50

viii

Page
Figure 21: Model Custom GUI .. 51

Figure 22: Quick Estimate Input Dialog Box .. 52

Figure 23: AARES Model Outputs – Custom ... 53

Figure 24: AARES Model Outputs – Quick Estimate ... 54

ix

List of Tables

Page
Table 1: Typical Input Data (notional) .. 3

Table 2: Endpoint Relative Prediction Error Results... 19

Table 3: Next-Step Relative Prediction Error Results ... 20

Table 4: Database Summary .. 33

Table 5: Input Matrix – Potential Features .. 34

Table 6: Factor Analysis Results (abbreviated) ... 35

Table 7: 3-Factor Analysis Breakdown ... 36

Table 8: Backwards-Selection Logistic Regression Results.. 37

Table 9: Missile Test Data ... 39

Table 10: Current Year Reliability Estimates.. 41

Table 11: 24-month Reliability Prediction .. 42

Table 12: Network Verification Confusion Matrices .. 46

Table 13: Training Outputs.. 47

Table 14: Correlation Matrix ... 47

Table 15: GEM Weights .. 47

Table 16: Fused Outputs .. 47

AFIT/GOR/ENS/03-10

x

Abstract

ACC believes its current methodology for predicting the reliability of its Air

Launched Cruise Missile (ALCM) and Advanced Cruise Missile (ACM) stockpiles could

be improved. They require a predictive model that delivers the best possible 24-month

projection of cruise missile reliability using existing data sources, collection methods and

software. It should be easily maintainable and developed to allow a layperson to enter

updated data and receive an accurate reliability prediction. The focus of this thesis is to

improve upon free flight reliability, although the techniques could also be applied to the

captive carry portion of the missile reliability equation. The following steps were taken

to ensure maximum accuracy in model results.

1. Add more detail to flight test reliability calculation.

2. Convert the ground test data into a usable form (reduce).

3. Engage in an exercise in feature selection.

4. Develop a Matlab model prototype.

5. Validate the model via problems with known solutions.

6. Apply an appropriate data fusion technique to the different network outputs
(logistic regression, feed-forward and radial basis function).

7. Put the model into the form of a usable tool for the end-user.

The end product is the ALCM/ACM Reliability Estimation System (AARES), a

VBA-based model that meets all user criteria.

1

USING NEURAL NETWORKS FOR ESTIMATING

CRUISE MISSILE RELIABILITY

I. Introduction

General Issue

United States Strategic Command (USSTRATCOM) conducts an annual Nuclear

Weapon System Planning Factors Update to determine its ability to meet the Single

Integrated Operational Plan (SIOP) commitment. USSTRATCOM requires the Navy,

Space Command (SPACECOM) and Air Combat Command (ACC) to present a 24-

month prediction of the reliability of the weapons systems of concern, along with a

justification of the prediction methodology. ACC believes its current methodology for

predicting the reliability of its Air Launched Cruise Missile (ALCM) and Advanced

Cruise Missile (ACM) stockpiles could be improved. Consequently, ACC/DON was

tasked with developing a new approach for meeting the STRATCOM requirement.

Problem Statement

ACC uses flight test results and an estimated degradation factor to compute

current year cruise missile reliability. A simple logistic regression (discussed in Chapter

2) is performed to predict cruise missile reliability. Unfortunately, there are an extremely

small number of annual flight tests (2-3 shots per year). As a result, the ACC method

cannot be used with a great degree of confidence in its accuracy.

2

Objective

The goal of this thesis is to develop a predictive model that delivers a realistic 24-

month reliability projection. The model should utilize existing data sources, collection

methods and software. It should be easily maintainable and developed to allow a

layperson to enter updated data and receive an accurate reliability prediction.

Background

The maintenance concept for cruise missiles does not lend itself to continuous

data collection of missile status. ALCMs and ACMs are protected from the worst of the

elements through storage in secured, structurally reinforced igloos. The majority of both

stockpiles are stored mounted on common strategic rotary launchers (CSRL) or pylons,

and generally referred to as “packages.” Periodically, packages are pulled from storage

for maintenance, testing and exercises. Results of the maintenance checks and tests are

recorded by munitions personnel and forwarded to the depot at Oklahoma City, Air

Logistics Center (OC-ALC) and ACC. Examples of pertinent test fields (notional) are

shown in Table 1.

3

Table 1: Typical Input Data (notional)

 # Passed # Failed Total # Tested Pass Rate
LLT Type A 167 15 182 92%
LLT Type B 16 2 18 89%
LPT Type A 230 8 238 97%
LPT Type B 13 11 24 54%
CSRL SIT 0 0 0 N/R
Pylon SIT 0 0 0 N/R
CSRL MIT 319 5 324 98%
Pylon MIT 380 19 399 95%
Level I Type A 159 50 209 76%
Level I Type B 15 22 37 41%
Level III Type B 0 0 0 N/R
INE Auto-Cal 124 15 139 89%

* see Appendix A for acronym definitions

Data is provided from Minot and Barksdale Integrated Maintenance Facilities

(IMFs) as well as historical records from OC-ALC, ACC/LGWN and USSTRATCOM.

The operational bases use the same basic maintenance concept, however, the manner in

which the missiles are stored precludes certain tests – i.e. Minot does not store any

ALCMs on pylons, therefore, no ALCM/Pylon test combinations are performed.

A Loaded Launcher Test/Loaded Pylon Test (LLT/LPT) Type A is run after

building the package and to certify operational capability of the package. It is primarily a

communication test and verifies that the aircraft will be able to communicate through the

pylon/launcher and down to the missile. A LLT/LPT Type B is a retest of previous SIT

or MIT failure. The test is identical to a LLT/LPT Type A and serves a similar purpose

as a Level 1 except at the package level (as opposed to the individual missile level).

A MIT is a communication test between the aircraft and the missile and is

normally performed after package upload onto the aircraft. The aircraft offensive

avionics system (OAS) sends a command word to the missile and tells it to perform an

4

internal built-in test (BIT) test on any components it has and report the results back to the

aircraft. SITs are more involved and must be performed (per technical order) if a single

missile swap occurs on the flight line. In addition to all the tests the MIT performs, a SIT

commands the missile inertial navigation element (INE) to go into a Fine Align/Coarse

Align. This test ensures that the inertial platform is able to align to an earth reference and

can take 1-second updates from the aircraft. The SIT also performs a preflight test that

actuates the elevons minutely to ensure the steering avionics are performing properly.

Both tests are considered the last check on the weapon package prior to the aircrew

accepting the aircraft as mission ready. Although MITs and SITs give a good first

indication of missile health, detected faults must be verified with further testing via an

electronic systems test set (ESTS) in the IMF.

Level 1 Type B is a deep cycle electronic test run by the ESTS as a verification of

MIT, SIT or loaded launcher test/loaded pylon test (LLT/LPT) fault indication. When a

memory dump from a previously mentioned test (LLT/LPT, MIT, SIT) indicates a

problem in a missile area, the Level 1 Type B runs component BITs, interrogates

components, and compares and validates proper responses to diagnose the problem down

to the component level. Level 1 Type A’s are identical to Type B’s except they are run

after a 72-month engine change or other periodic maintenance. Figure 1 illustrates the

flow of events associated with the described ground maintenance tests.

5

Figure 1: MIT/SIT - Level 1Maintenance Testing

INE auto-cals are performed in the IMF every 48-months and specifically check

to ensure the INE is operating correctly and not drifting beyond tolerance limits. Due to

the 7-hour test duration, auto-cals are normally performed on an entire package to reduce

workload and expedite the maintenance schedule. Figure 2 illustrates typical INE auto-

cal chain of events.

Pass MIT?
Weapon package

upload to
aircraft

Pass Level 1
Type B?

Swap out
identified
missile

Transport missile
back to IMF for
troubleshooting

Aircrew accept
aircraft

Aircraft
cocked-on

Upload missile
back to a
package

Pass SIT?

Return package
to storagePass LLT/LPT?

Pass Level 1
Type A?

72-month engine
change

Deeper,
component- level
testing and repair

NoNo

No

No

No

Yes

Yes

Yes

Yes

Yes

Affected missile
download

or

Flightline

IMF

6

48-month mx
cycle

Pass INE
Auto-Cal?

Return package
to storagePass LLT/LPT?

No

YesYes

No

Remove &
Replace INE

Pass Level 1
Type A?

No

Yes

Deeper,
component- level
testing and repair

Affected missile
download

Upload missile
back into
package

Affected missile
download

Pass Level 1
Type B?

No

Yes

or

Figure 2: INE Auto-cal - Level 1Maintenance Events

Level 3 Type B testing is component level testing, run as a verification of faults

identified in a Level 1 test – i.e. if a missile fault is identified down to a component

during a Level 1 test, Level 3 testing will troubleshoot the identified component down to

the subcomponent level.

Knowing the data available with which to improve upon the existing technique for

determining missile reliability, the next logical step would be an overview of

methodologies being used by other weapons communities, thereafter proceeding into a

discussion on proposed steps to improve upon the existing cruise missile reliability

computation.

7

II. Literature Review

Before engaging in an attempt to improve upon the current ACC methodology,

one should consider (at the macro-level) other techniques being employed. Three other

weapons communities are currently using valid methodologies for determining weapon

system reliability. Although some concepts could be applied to cruise missiles,

differences in weapon employment and maintenance concepts limit the extent to which

the cruise missile community may use the ideas of others.

SLBM

The submarine launched ballistic missile (SLBM) community contracts the Johns

Hopkins University Applied Physics Laboratory (JHU-APL) to calculate and track

Trident II and Trident III reliability. All information contained in this section was

derived from Appendix B, Methodology and Supporting Analysis, Trident II and Trident

III Reliability Plan. Overall weapon system reliability (WSR) is calculated as follows:

RRFRLRWSR ××= (1)

where

LR = Launch Reliability

FR = Inflight Reliability

RR = Reentry Reliability

8

)()(LWAfLIfPLACRLR ×××= (2)

where

CR = Countdown Reliability

PLA = Post-launch Assessment

LI = Launch Interval

LWA = Launch Window Availability

DRBRFR ×= (3)

where

BR = Boost Reliability

DR = Deployment Reliability

RRBRRIRRSRR ××= (4)

where

RRS = Reentry Separation Reliability

RRI = Reentry Inflight Reliability

RRB = Reentry Burst Reliability

One should note that each sub-sub-reliability (eg. Launch Reliability) is further

broken down at least one more level in the reliability plan -- discussion of which is

beyond the scope of this thesis. The model uses inputs from a patrol test database

[weapon system readiness tests (WSRTs), battle readiness tests (BRTs) and navigation

9

accuracy tests (NATs)], surveillance tests and flight test results, as well as simulation

results for components that cannot be exercised in the course of other testing.

TLAM

Information described in this section is derived from the SIOP Planning Factors

Conference, October 2002. The Navy uses in-house contractors at Naval Surface

Warfare Center (NSWC)-Corona for determining Tomahawk Land Attack Missile

(TLAM) reliability. The reliability model developed consists of the following:

PRFRLRWSR ××= (5)

where

LR = Launch Reliability

FR = Inflight Reliability

PR = Payload Reliability

MAMRPFRLR ××= (6)

where

PFR = Platform Reliability

MR = Missile Reliability

MA = Missile Adjustment

10

CACRBABRFR ×××= 2 (7)

where

BR = Boost Reliability

BA = Boost Adjustment

CR2 = Cruise Reliability

CA = Cruise Adjustment

DOEFNavyAFWAMearmPR ×××= &Pr (8)

where

Prearm = Warhead Prearm Reliability

WAM = Warhead Arming Module

AF&F = Arming Fuzing & Firing

DOE = Department of Energy Component Reliability

Downward adjustment factors shown in launch and inflight reliability equations

stem from stockpile failures detected and attributed to the appropriate operational phase.

Joint integrated laboratory tests (JILT), stockpile laboratory tests (SLT), functional

ground tests (FGT) and flight tests serve as the primary data sources for the TLAM

reliability model.

ICBM

The synopsis in this section is from the joint paper Weapon System Effectiveness

for Legacy Systems, authored by Lindblad et al. As with SLBMs, the intercontinental

11

ballistic missile (ICBM) system program office (SPO), TRW contractors and analysts at

the JHU-APL have constructed an involved model to determine system reliability (see

Figure 3).

Variables
Test Data

Attribute
Test Data
(Reliability
Database)

IMDB
Force age
profiles

Component:
Future Force Age Profile
 With Corrective Action

Quantity

Component Ages at Year n

Original
Replaced

Component: “Go-no-go” Trend
Analysis P(Success)-by-Age

P

Age

If there is no trend,
this function is a
straight line equal to
s/n from static & flight
tests. Must be
independent of all
other failure modes.

R

Component:
Reliability Degradation-

by-Year

Year
Now n

R

Subsystem/System:
Reliability-by-Year

YearNow n

R

Component
Reliability-by-Year

Year
Now n

Multiply with all other
component Reliability-

by-Year curves

R

Component:
Reliability

Recovery-by-Year

Year
Now n

Ageout continues without
Corrective Action

Program
Planning

INPUTS Multiply all
P(S) curves
together (all

must be
independent,
& all perform-

ance limits
must be

failure limits).

OUTPUT

Quantity

Ages Now

Component:
Current Force Age Profile

When app-
ropriate, this
can be approximated
by the average age.

Component:
Critical Parameter

P(Success)-by-Age

P

Age

Critical
Parameter

Age

Component: Critical
Parameter Variables Trend

Analysis

Failure Limit

Component:
Corrective Action

Fielding Schedules
Component FY1 FY2 … FYn

Item 1 # # … #
 : : : :
Item k # # … #

R

Age

Component:
Reliability-by-Age

Figure 3: ICBM Reliability Model (Lindblad, 2001: 8)

Simplifying the model to some degree, the ICBM community uses ground tests,

flight tests, simulated launches and DOE-provided warhead data as sources for traditional

analytic models to determine reliability.

ALCM/ACM

The current reliability measures discussed in this section are sourced from

interviews with subject matter experts at ACC (Quick, 2003) and OC-ALC (Bredehoeft,

12

2002), and briefings at the USSTRATCOM Planning Factors Conference, October 2002.

As mentioned previously in Chapter 1, herein lie the problem and the reason for this

thesis. With the exception of missile reliability, it is understood that all other components

of the following equations have adequate sample sizes with copious amounts of data that

has been reduced for use in classical analytic models, widely accepted within the

weapons community.

WRMRCRWSR ××= 2 (9)

where

CR2 = Carrier Reliability

MR = Missile Reliability

WR = Warhead Reliability

ACRRSRWDRASRAGRCR ××××=2 (10)

where

AGR = Aircraft Generation Reliability

ASR = Aircraft Systems Reliability

WDR = Weapon Delivery System Reliability

RSR = Release System Reliability

ACR = Aircrew Reliability

The National Nuclear Security Administration provides warhead reliability

information (used in WSR calculation). All carrier data is collected from maintenance

databases (updated weekly by maintenance organizations throughout ACC). With regard

13

to missile reliability, ACC relies heavily upon the cruise missile SPO for reliability data.

The calculation as follows:

DegradeFFRCCRMR ××= (11)

where

CCR = Captive Carry Reliability

FFR = Free-flight Reliability

Captive carry and free flight data are collected in the course of flight testing. The

cruise missile SPO provides the degrade factor shown in the missile reliability equation.

(One should note here that this thesis focuses solely on improving the missile reliability

determination -- in particular the determination for free-flight reliability; although the

same steps could be applied to captive carry data for an analogous estimate).

The current methodology for predicting missile reliability involves regressing

time against flight test results. For the purposes of demonstration, the notional data

shown in Appendix B is used. The data is re-created in JMP where a logistic regression

is performed using “FY” as the independent variable and “Result” as the dependent

variable (response). The regression results are assumed to be a cumulative distribution

function (CDF) for probability of failure with parameters:

Intercept -2.8380919
Coefficient 0.23892478

14

Yielding

)))23892478.8380919.2(exp(1(
1)(FYFYF ×+−−+= (12)

By definition

))23892478.8380919.2exp(1(
1)(1)(FYFYFFYR ×+−+=−= (13)

Substituting the FY data into the equation results in the column labeled “Rel Est”

in Appendix B. A plot of the derived reliability function is shown in Figure 4.

0 10 20 30
0

0.5

10.945

0.013

1 F FY()−

300 FY

v

Figure 4: Flight Test Regression Plot

Predictive missile reliability can be calculated by inputting a value corresponding

to the desired FY into the R(FY) equation. The assumption that a CDF results from the

regression is supported by taking the derivative of F(FY) with respect to FY to get the

probability density function (PDF) f(FY). Integrating a valid PDF over the applicable

range should result in a value of one. The Mathcad results below show the derivative of

F(FY) and the integration of f(FY). The integration solution (1) implies that the CDF

interpretation with regard to the regression is not unreasonable.

15

FY
F FY()d

d

simplify

float 4,
.2389

1. exp 2.838 .2389 FY⋅−()+()2.
exp 2.838 .2389 FY⋅−()⋅→

∞−

∞

FY
FY

F FY()d
d

⌠

⌡

d
simplify

float 4,
1.→

 (14)

Although the other weapons communities have primarily opted to use analytic

models for reliability predictions, a concerted effort into researching missile component

reliabilities and corresponding tail-number histories would be necessary for developing a

similar approach for cruise missiles. Statistical techniques that predict failures based

upon the performance of a similar system could also be used. Unfortunately, analytic

models rely upon assumptions about the nature of failures, development environments

and probabilities of failure. Additionally, traditional reliability models demonstrate

different predictive capabilities during the various phases of testing and work best with

copious amounts of test data. The cruise missile community does not employ the

maintenance concept nor have the data collection infrastructure to support such an effort.

As a result, a traditional analytic model that predicts well under these circumstances

seems infeasible.

In lieu of analytic models, neural networks could be used for reliability estimation

and prediction using only failure histories. Although the weights developed by a network

do not directly relate to particular reliability metrics (unlike analytic models), neural nets

do not rely upon assumptions about the development environment or external parameters,

nor do they require large amounts of data to make reasonable predictions.

16

In simplest terms, a neural network processes an input feature vector x =

(x1,…xN) along N branching nodes (Figure 5).

X1

X2
.
.
.
.
.
.
XN

∑
=

⋅=
N

n nXnmwmr 1

w11

w21

wN1

1 f

mremrfmy −+
==

1
1)(

T1

w12

w22

wN2

2 f T2

w1M

w2M

wNM

M f TJ

.

.

.

y1

y2

yM

X1

X2
.
.
.
.
.
.
XN

∑
=

⋅=
N

n nXnmwmr 1

w11

w21

wN1

1 f

mremrfmy −+
==

1
1)(

T1

w12

w22

wN2

2 f T2

w1M

w2M

wNM

M f TJ

.

.

.

y1

y2

yM

Figure 5: Simple Neural Network (Bauer, 2002)

The input nodes fan out to each perceptron (network node that performs

operations upon N inputs and provides a single output) so as to allow input from each

component of x. Each incoming arrow has an associated weight (wnm), indexed by the

convention: input node associated with the xn
th feature coming into the mth perceptron.

Each of the M perceptrons partitions the feature space in to two half-spaces, usually

Input
Nodes

Perceptrons

Target
Vector

17

resulting in at least 2M half-spaces. Adjusting the weights (wnm) determines the required

convex regions that contain the desired multilinearly separable classes, as defined by the

target vector (T). In other words, the network attempts to approximate the values in the

target vector (T) using features contained in the input vector (x).

Karunanithi et al. in their IEEE journal article present a pertinent example of a

neural network used to solve a reliability problem. In terms of a neural network

mapping, reliability prediction can be stated as:

{ })()()),(),((: ∆+→∆+ ++ totitOtIP hkhkkk (15)

System Failure History Network Prediction

where
)(tI k Set of sequential execution times

)(tOk Set of corresponding observed accumulated faults

)(∆++ ti hk Desired future test session

)(∆++ to hk Corresponding cumulative faults

∆ Cumulative execution time of h consecutive future test sessions

By adjusting network neurons’ weights via training, the network can be used to

predict the total number of faults at the end of a future test session k + h, merely by

inputting)(∆++ ti hk . A network’s predictive ability can be determined by what it learns

and in what sequence. Generalization training can be described as relating each input it at

time t with an output ot – so the network learns to model the relationship between the

input and output variables relative to the same time period (Figure 6).

18

i1 i2 ik

o1 o2 okOutput

Input

.

Time

i1 i2 ik

o1 o2 okOutput

Input

.

Time

Figure 6: Generalization Training

Prediction training is similar to generalization training, except it at time t is

associated with the value of the output variable ot+k at time. So the network learns to

predict outputs relative to the nth time period (Figure 7).

i1 i2 ik

o1 o2 o3Output

Input

Time

ok+1 ok+2

ik+1

.

i1 i2 ik

o1 o2 o3Output

Input

Time

ok+1 ok+2

ik+1

.

Figure 7: Prediction Training

Training a network is usually accomplished via a supervised learning algorithm,

where network weights are adjusted using a quantified error feedback. Back-propagation

is the most common supervised learning algorithm. Using an iterative approach, back-

propagation calculates the sum-squared error between desired outputs and the network-

generated outputs and uses the gradient of the sum-squared error to adapt network

19

weights in an effort to reduce the error measure in future epochs. The network is

considered to be trained when the squared error drops below a specified threshold.

To test the contention that neural nets can work as well or better than analytic

models, Karunanithi et al used the following example. A typical feed-forward network

was trained on a software failure dataset. Total test and debugging time was 46 days with

a cumulative 266 faults over the time period. Since logistic-function units were used in

the network, data was scaled down to a suitable range (0.1 to 0.9). For the purpose of the

experiment, minimum training-set size started at three data points (time increments) and

incremented up to 45 data points (time increments) in steps of two. A prediction average

was taken over fifty trials at each set size with different random seeds used to initialize

the weights for each trial. The overall purpose of the experiment was to predict

cumulative endpoint errors at various points of time prior to the actual dataset endpoint

(46). Table 2 shows the experiment results by way of comparison. Results are in terms

of relative prediction error using the formula:

RPE = (predicted faults – actual faults) / actual faults (16)

Table 2: Endpoint Relative Prediction Error Results

Average and Maximum Errors in Endpoint Predictions
Average Error Maximum Error Model

1st Half 2nd Half Overall 1st Half 2nd Half Overall
FFN Generalization 7.34 1.19 3.36 10.48 2.85 10.48
FFN Prediction 6.25 1.10 2.92 8.69 3.18 8.69

Logarithmic 21.59 6.16 11.61 35.75 13.48 35.75
Inverse Polynomial 11.97 5.65 7.88 20.36 11.65 20.36
Exponential 23.81 6.88 12.85 40.85 15.25 40.85
Power 38.30 6.39 17.66 76.52 15.64 76.52
Delayed S-shape 43.01 7.11 19.78 54.52 22.38 54.52

20

First Half is the model’s average prediction error in the first half of the experiment.
Second Half is the model’s average prediction error in the second half of the experiment.
Overall is the model’s average prediction error for the entire duration of the experiment.

The results show accurate neural network endpoint predictions in early and late

stages of the experiment. A similar experiment was conducted to show next-step

prediction accuracy with results shown in Table 3.

Table 3: Next-Step Relative Prediction Error Results

Average and Maximum Errors in Next-Step Predictions
Average Error Maximum Error Model

1st Half 2nd Half Overall 1st Half 2nd Half Overall
FFN Generalization 8.61 2.40 4.59 17.51 4.95 17.51
FFN Prediction 8.02 3.05 4.80 17.74 6.64 17.74

Logarithmic 4.94 2.31 3.24 5.95 7.56 7.56
Inverse Polynomial 4.76 2.24 3.13 6.34 7.83 7.84
Exponential 5.70 2.33 3.52 10.17 7.42 10.17
Power 4.59 2.44 3.20 8.59 7.12 8.59
Delayed S-shape 6.17 2.12 3.55 13.24 7.98 13.24

In this case, the data shows neural nets having prediction errors only slightly

greater than traditional analytic models. As illustrated by the example, neural networks

can be used to approximate reliability at different points in time using failure histories.

Furthermore, the prediction errors realized by the networks are less than or comparable to

traditional analytic models.

As a practical, although modified, application of the previous article in this thesis,

neural networks are used for predicting cruise missile reliability (for this thesis, free-

flight reliability prediction is the focus). Selected ground test results (features) are run

through different types of neural networks with notional free flight test results as the

21

target. Once generated, the different network outputs are fused into a single number

representing the model’s estimate of free flight reliability per year.

 Logistic Regression.
 Widely used in statistics, logistic regression can be visualized using Figure 8

(Bauer, 2002).

X1

X2
.
.
.
.
XN

∑
=

⋅=
N

n nXnws
1 se

z −+
=

1
1 z T

w1
w2

wN

X1

X2
.
.
.
.
XN

∑
=

⋅=
N

n nXnws
1 se

z −+
=

1
1 z T

w1
w2

wN

Figure 8: Logistic Regression Network

Model features (Xn) are multiplied by an initial draw of random weights (wn) and

summed (s). The sum (s) is put through a ‘squashing function’ and an output (z) results.

By calculating the sum-squared error between desired outputs (T) and the network-

generated outputs (z), network weights (w) are adjusted iteratively in the direction

opposite the gradient of the sum-squared error. The process continues until changes in

the sum of squared error are reduced below a specified threshold.

22

 Feed-Forward Neural Network.
Taking the logistic regression network a step further, feed-forward neural

networks (FFN) use an additional layer of hidden neurodes to approximate the target

vector (Figure 9 – Looney, 1977: 84).

X1

X2
.
.
.
.
.
.
XN

∑
=

⋅=
N

n nXnmwmr 1

js
e

jsgjz −
+

==
1

1)(

z1 T1

w11

w21

wN1

1 f

mremrfmy −+
==

1
1)(

∑
=

⋅=
M

m mymjujs
1

1 g

z2 T2

w12

w22

wN2

2 f 2 g

zJ TJ

w1M

w2M

wNM

M f J g

.

.

.

.

.

.

y1

y2

yM

u11
u21

uM1
u12

u22

uM2

u1Ju2J

uMJ

X1

X2
.
.
.
.
.
.
XN

∑
=

⋅=
N

n nXnmwmr 1

js
e

jsgjz −
+

==
1

1)(

z1 T1

w11

w21

wN1

1 f

mremrfmy −+
==

1
1)(

∑
=

⋅=
M

m mymjujs
1

1 g

z2 T2

w12

w22

wN2

2 f 2 g

zJ TJ

w1M

w2M

wNM

M f J g

.

.

.

.

.

.

y1

y2

yM

u11
u21

uM1
u12

u22

uM2

u1Ju2J

uMJ

Figure 9: Feed-Forward Neural Network

At each neurode (m) in the middle (hidden) layer, model features (Xn) are

multiplied by respective weights (wnm) and summed (rm). The middle layer sums (rm) are

Hidden
(middle)

Layer

Output
Layer

23

put through the ‘squashing functions’ (f) to get middle layer outputs (ym). At each output

neurode (j), middle layer outputs (ym) are multiplied by upper layer weights (umj) and

summed (sj). The upper layer sums (sj) are put through another set of ‘squashing

functions’ (g) to get network outputs (zj). Upper and middle layer weights are trained

using a supervised training algorithm – back-propagation. As described by Karunanithi

et al, back-propagation iteratively calculates sum of squared errors between desired

outputs (Tj) and network outputs (zj). Upper and middle layer weights are adjusted in the

direction opposite the gradient of the sum of squared errors. As with logistic regression,

training continues until changes in the total sum of squared error drop below a specified

threshold.

 Radial Basis Function Network.
A visualization of the third and final type of neural network used in the model can

be seen in Figure 10 (Looney, 1977: 96).

Figure 10: Radial Basis Function Network

A radial basis function network (RBFN) differs from the previously described feed-

forward neural network in the activation functions and the way they are used. Different

paradigms are used when training a RBF network (Looney, 1977: 98). In the simplest

case, network weights at the middle and output layers are initially set and remain fixed –

i.e. no training. The second paradigm deigns that the middle layer weights remain fixed

and only the output layer weights are trained. The third and most flexible design allows

for training of both the middle and output layer weights. The particular network

25

allows for training of both the middle and output layer weights. The particular

network used in the model is designed according to the second paradigm, in that the

matrix of weights at the middle hidden layer (vnm) is initially set equal to the matrix of

input training exemplars (Xnq) and then not adjusted further. Only the weights at the

output layer (umj) are trained to reduce the sum of squared error for the network. Hidden

layer neurodes number the same as the number of input exemplars (M=Q), with each

neurode having the same number of components (N) as the input vectors’ features. Put

another way, “The center vector vm = (v1m,…, vNm) at the mth hidden neurode has N

components to match the input feature vector.” (Looney, 1977: 96) A spread parameter

(σ) is calculated using the formula:

NM
1

)2(

1

⋅
=σ (17)

As exemplar vectors (X) ‘proceed’ through the network, the square of its’

distance from the center vector (vm) is calculated. The idea being, the neurode activation

function will react more strongly as X is closer to the center vector of the particular

neurode, with X = vm resulting in the strongest response. Middle layer outputs ym are

calculated as shown in Figure 10. At each upper layer output neurode, initial weights

(umj) are set by a random draw, multiplied by the appropriate middle layer outputs,

summed, and divided by M to attain a model output (zj). Upper layer weights are

adjusted via supervised training (similar to the previously discussed FFN) until changes

in total sum of squared error drops below a specified threshold.

26

 Generalized Ensemble Method.
When faced with three network outputs and desiring only one, a method for

combining the outputs becomes necessary. Ideally, it is desirable to combine the outputs

in such a manner as to reduce the mean squared error as compared to any single network.

Each network in the model develops differently since the randomly generated initial

weights result in different starting locations and the model uses three different classes of

networks. These facts in conjunction with the gradient search method potentially cause

each network to point to a different local minimum in the error space. The local minima

are important as they capture different performance areas of the data set. Therefore,

when the results of different networks are combined, more information is captured and

the performance of the model is increased. The generalized method for combining the

different network outputs is referred to as generalized ensemble method (GEM).

(Perrone and Cooper: 7-8) The generalized ensemble method entails combining N

networks (fi(x)) such that ∑ ∑
=

=

=

=

+=≡
Ni

i

Ni

i
iiiiGEM xmxfxfxf

1 1
)()()()(αα . The si 'α must

satisfy the constraint ∑ = 1iα , and mi is defined as the difference between the network

fi(x) and the true, unknown function f(x). Perrone and Cooper define a correlation matrix

Cij as E[mi(x)mj(x)] and propose minimizing the MSE[fgem] by minimizing ∑
ji

ijji C
,

αα .

Furthermore, the authors state that
∑ ∑
∑

−

−

=
k j kj

j ij
i C

C
1

1

α will minimize the desired MSE. Put

simply, the correlation matrix between the different networks allows calculation of

“weights” to be applied to the output of each net. Simply summing the weighted outputs

of each network produces a new model that reduces the MSE of the overall model. This

27

result stems from different parts of the error space being captured by the different

networks, but combining the networks allows the capture of more of the error space than

any single model.

 Using the tools and techniques described in this section, it becomes possible to

develop a model for determining and predicting free flight reliability using a ground test

database, three neural networks and a fusion of network outputs.

28

III. Methodology

As with the models developed by other agencies, the objective of this thesis is to

create a more detailed, easily maintainable model that accurately predicts cruise missile

reliability. It should be noted that the focus of this thesis is to improve upon free flight

reliability, although the techniques could also be applied to the captive carry portion of

the missile reliability equation. The steps taken in the course of this thesis ensure

maximum accuracy in model results.

1. As the other weapons communities have done, develop a good target vector for
the networks by adding more definition to cruise missile flight test reliability
calculations.

2. Convert the ground test data into a usable form (reduce).

3. Engage in an exercise in feature selection.

4. Develop a Matlab model prototype.

5. Validate the model via problems with known solutions.

6. Apply an appropriate data fusion technique to the different network outputs
(logistic regression, feed-forward and radial basis function).

7. Put the model into the form of a usable tool for the end-user – convert the model

into visual basic for applications (VBA) and save into a MS Excel worksheet
containing the database.

Add Definition to Flight Test Reliability

To attain valid outputs from a model, valid targets must be used. Therefore, an

examination of the inflight portion of the mission is in order. During reliability testing,

“Methods exercising all product operational modes should be described.” and “…the

effective use of test resources and the validity of the data collected require that a degree

29

of rigor be included such that the product is operated and stresses as intended…” (Morris:

255-256) A review of the technical order (TO) for AGM-129 (ACM -- TO 21-AG129-2-

1: 1-30 – 1-34), and conversations with subject matter experts reveals some natural break

points in the course of a mission that can be used to further define the operational modes

of the missile. During captive carry the missile has two identifiable phases: transit and

prelaunch. The transit phase includes the time after the aircrew has accepted the aircraft

but prior to prelaunch. Prelaunch phase begins with missile warm-up and extends up to

(but not including) missile separation. The flight phase of the missile is broken down

into three phases: transition to cruise, cruise and endgame. Transition to cruise begins

with missile separation and ends after the missile separation maneuver is completed. The

cruise phase begins with the missile flying to the first waypoint and ends prior to the

warhead arming maneuver. Endgame begins with the warhead arming maneuver and

terminates with missile detonation. Figure 11 illustrates the sequence of events for a

typical mission.

Aircrew
Acceptance
Aircraft Takeoff
Inflight Monitoring

Transit Prelaunch
Transition
to Cruise Cruise Endgame

Missile Warm-up
Missile Status and

Fault Monitor
Missile Alignment
Mission Data Transfer
Warhead Prearm
Launch Countdown

Separation
Deploy Fins
Deploy Wings
Engine Start
Separation

Maneuver

Fly to First Waypoint
Fly Preprogrammed Course
Check and Update

Navigation Accuracy

Warhead Arming
Maneuver

Final Warhead Arming
and Fuzing

Terminal Maneuver

Captive Carry Free Flight

Aircrew
Acceptance
Aircraft Takeoff
Inflight Monitoring

Transit Prelaunch
Transition
to Cruise Cruise Endgame

Missile Warm-up
Missile Status and

Fault Monitor
Missile Alignment
Mission Data Transfer
Warhead Prearm
Launch Countdown

Separation
Deploy Fins
Deploy Wings
Engine Start
Separation

Maneuver

Fly to First Waypoint
Fly Preprogrammed Course
Check and Update

Navigation Accuracy

Warhead Arming
Maneuver

Final Warhead Arming
and Fuzing

Terminal Maneuver

Captive Carry Free Flight

Figure 11: Mission Sequence (TO 21-AG129-2-1: 1-30 – 1-34)

30

Each flight test missile uses a telemetry kit to provide the ground station with

missile status. Flight test failures are investigated fully until a causative factor for the

failure is identified. As a result, the mission phase where a failure-causing fault occurs is

readily identifiable. Using the natural breakpoints in the mission profile, more detailed

reliability equations for missile reliability (equation 11) become evident.

CCPRCCTRCCR ×= (18)

where

CCTR = Captive Carry Transit Reliability

CCPR = Captive Carry Prelaunch Reliability

FFERFFCRFFTRFFR ××= (19)

where

FFTR = Free Flight Transition to Cruise Reliability

FFCR = Free Flight Cruise Reliability

FFER = Free Flight Endgame Reliability

Data Reduction

The data being considered for use in the model is standardized into pass rates per

month using the simple formula:

testedmissiles
testpassedmissilesPassRate

__#
___#

= (20)

31

The pass rates for MITs and SITs are adjusted for false negatives using Level 1

Type B results. Missiles passing Type B testing are credited back to the MIT and SIT

pass rates in proportion to the number of missiles undergoing test.

SITfailingmissilesMITfailingmissiles
MITfailingmissilesproportionMIT

___#___#
___#_

+
= (21)

proportionMITTypeBpassedmissilesadjustmentMITTypeB ____#__ ×= (22)

MITviatestedmissiles
adjustmentMITTypeBMITpassedmissilesPassRateMIT

____#
_____#_ +

= (23)

SITfailingmissilesMITfailingmissiles
SITfailingmissilesproportionSIT

___#___#
___#_

+
= (24)

proportionSITTypeBpassedmissilesadjustmentSITTypeB ____#__ ×= (25)

SITviatestedmissiles
adjustmentSITTypeBSITpassedmissilesPassRateSIT

____#
_____#_ +

= (26)

Another consideration is whether to use monthly data or annual averages. When

making the decision, one should first consider continuity of the data. Analysis of the data

reveals MITs are primarily run in the course of exercises and aircraft generations – i.e.

they are not accomplished every month. Using the monthly averages would cause

32

considerable gaps in the database and render the test unusable as a feature. As a second

matter of course, missile MIT failures will result in Level 1 Type B re-testing to verify

faults. In some cases, the Type B verification is not run in the same month as when the

MIT fault was realized; or the missile testing “bleeds-over” into another month. In that

case, the Type B adjustment to the MIT pass rate would not be credited to the appropriate

month. Annual averages alleviate the “bleed-over” problem by using the raw numbers

accumulated over the course of the year and making the adjustments at year’s end. As a

final note, STRATCOM only requires annual numbers (rates per FY) for their planning

factors.

Model Feature Selection

Once again, one should note that this thesis focuses solely on the free flight

portion of the missile reliability equation, but the same feature selection techniques can

be applied toward developing an analogous model for captive carry reliability. In

developing the neural networks for predicting free flight reliability, pertinent features

must be selected from a ground test database (database synopsis presented in Appendix

C). Using all the available tests may give a more precise estimate of the desired

reliability, however running the entire set of input features through the model could be

time consuming as well as unnecessary. Ideally, a feature set that adequately represents

the underlying structure of the data while providing an accurate estimate of the chosen

reliability is desirable. The database compiled previously is comprised of numerous

ground test results conducted on Air Launched Cruise Missiles compiled over 13 years

(FY1990 through FY2002). The few empty data fields (years where tests of that nature

33

were not performed – SIT testing primarily) are filled in by interpolation estimates.

Changes in the manner of tracking the test data also result in using estimates for certain

fields – LLT/LPT Types A and B primarily. Test definitions and feature selection

techniques can be used to reduce the number of ground tests to be used as inputs in the

model. The selected inputs are then validated against subject matter expert opinion.

Table 4 summarizes the data fields available as potential model features.

Table 4: Database Summary

GROUND TEST DESCRIPTION
Loaded Launcher Test /
Loaded Pylon Test
(LLT/LPT) Type A

After package build-up; run to certify operational
capability of package; communication test primarily –
will the aircraft be able to communicate through the
pylon/launcher and down to the missile

LLT/LPT Type B Identical to Type A except run to verify previous SIT or
MIT failure

Missile Interface Test (MIT) Communication test between the aircraft and the missile
-- normally performed after package upload onto the
aircraft.

Systems Interface Test (SIT) More involved test than MIT; must be performed (per
technical order) if a single missile swap occurs on the
flight line

Level I Test, Type A Run after a 72-month engine change or other periodic
maintenance; deep cycle electronic test run by the ground
test set

Level I Test, Type B Identical to Type A except run as a verification of MIT,
SIT or LLT/LPT fault indication -- when a memory
dump from a previously mentioned test indicates a
problem in a missile area, the Level 1 Type B runs
component BITs, interrogates components, and compares
and validates proper responses to diagnose the problem
down to the component level.

Level III Test, Type B Run after a Level 1 test indicates a problem with a
specific component – diagnoses problem down to sub-
component level

INE Auto-Calibrations Performed every 48 months – specifically checks to
ensure INE is operating correctly and not drifting beyond
tolerance limits

34

By definition, Type B testing only occurs as a result of a Type A test failure.

Therefore, all Type B testing is excluded from the model except for use as an adjustment

factor. The remaining tests of interest include, LLT/LPT Type A, SIT, MIT, Level 1

Type A and INE Auto-cal. Additionally, previous year flight test results are added to the

list of possible features, now totaling six potentials. Two techniques are used for feature

selection: factor analysis and backwards-selection logistic regression. All flight test data

(previous year results only used for factor analysis; previous and current year results used

for backwards-selection logistic regression) used in both approaches are notional for

classification purposes. Table 5 illustrates the input matrix used for both techniques.

Shaded fields denote estimated data.

Table 5: Input Matrix – Potential Features

FY LLT A SIT MIT Lvl 1 A INE Prev Yr Flt Test
90 96.03% 88.95% 93.88% 82.66% 94.10% 67.00% 75.00%
91 95.63% 96.34% 96.84% 81.87% 95.60% 75.00% 75.00%
92 95.32% 98.79% 99.10% 78.63% 97.45% 75.00% 50.00%
93 93.98% 93.64% 98.18% 79.57% 95.15% 50.00% 67.00%
94 93.13% 96.74% 98.75% 80.43% 95.42% 67.00% 75.00%
95 94.44% 94.90% 96.84% 81.22% 95.37% 75.00% 50.00%
96 95.04% 84.62% 99.00% 79.07% 96.94% 50.00% 67.00%
97 95.00% 100.00% 97.96% 78.05% 94.39% 67.00% 75.00%
98 95.09% 93.72% 98.65% 79.58% 93.72% 75.00% 100.00%
99 94.97% 91.18% 97.67% 73.49% 93.14% 100.00% 100.00%
00 95.48% 100.00% 99.37% 83.46% 96.48% 100.00% 100.00%
01 96.19% 100.00% 99.21% 71.10% 90.65% 100.00% 75.00%
02 92.06% 94.91% 99.46% 55.15% 84.13% 75.00% 100.00%

 estimated data

A factor analysis is performed to investigate underlying dimensions of the data

set. Using SAS to perform the factor analysis on the matrix of potential features

(columns 2-7 of Table 5), the resulting eigenvalues suggested a 3-factor model as

35

appropriate (Kaiser’s Criterion). A Varimax rotation was applied to see how the features

loaded with the following results (Table 6 -- full SAS factor analysis output available in

Appendix D):

Table 6: Factor Analysis Results (abbreviated)

Eigenvalues of the Correlation Matrix: Total = 6 Average = 1
 Eigenvalue Difference Proportion Cumulative

1 2.57942941 0.93849633 0.4299 0.4299
2 1.64093307 0.64655285 0.2735 0.7034
3 0.99438022 0.49333963 0.1657 0.8691
4 0.50104060 0.25566604 0.0835 0.9526
5 0.24537455 0.20653240 0.0409 0.9935
6 0.03884215 0.0065 1.0000

3 factors will be retained by the NFACTOR criterion.

Rotated Factor Pattern
 Factor1 Factor2 Factor3
 LLTA 0.60440 0.55597 0.39962
 SIT 0.06236 0.58353 0.64407
 MIT -0.19761 0.00203 0.88377
 Level1A 0.95825 -0.02802 -0.18447
 INE 0.97243 -0.12875 -0.00015
 PrevYr -0.16770 0.92043 0.10361

Variance Explained by Each Factor

 Factor1 Factor2 Factor3

 2.3002360 1.5141744 1.4003323

Final Communality Estimates: Total = 5.214743

LLTA SIT MIT Level1A INE PrevYr
0.83410138 0.75922666 0.82009747 0.95306195 0.96220513 0.88605012

Communality estimates suggest that a 3-factor model design adequately explains

the majority of the variance in the individual variables and, therefore is appropriate.

36

Running across the columns with regard to each feature, the maximum values are circled

and boldface. Each maximum value is grouped with the others in the column and an

analysis of the groupings reveals corresponding categories. Table 7 shows a translation

of the factor analysis results into categories. As a rule of thumb, the model should

include one of the relevant features under each of the factor columns.

Table 7: 3-Factor Analysis Breakdown

 Factor 1 Factor 2 Factor 3

Category IMF Testing Flight Testing On-Acft Testing

Relevant
Features

Level 1 Type A

INE Auto-cal

LLT/LPT Type

Previous Year
Flight Test

SIT

MIT

A backwards-selection logistic regression is run on the same data shown in Table

5, with the code utilized shown in Appendix E. Columns 2-7, along with a bias column,

were used as features with the last column serving as the target. After examining the

absolute value of the resultant weights, and removing from the model the feature

corresponding to the weight smallest in magnitude, the model is re-run. Table 8 shows

the results of the backwards-selection regression with shaded elements to show the

features eliminated and the model formed as a result. In the first case, all the features (6)

are included in the regression. The calculated weights are shown in the first data row of

Table 8. In this case, the weight associated with the SIT feature (shaded) has the smallest

magnitude – so it is removed from the model. The logistic regression code is run again

with only the bias, level 1, INE, LLT A, Prev Yr and MIT features (5) included. From

37

the second run, the LLT A feature has the smallest associated weight and so it is

eliminated from the next run. The process continues until only three features remain, as

suggested by the factor analysis. Feature elimination is also tempered with judgment

based upon factor analysis results. Total error is tracked to verify only minor changes

occurring as the features are eliminated.

Table 8: Backwards-Selection Logistic Regression Results

 Weights

Factor IMF Testing Flt Test On-Acft Testing

Error Bias Level 1 INE LLT A PrevYr SIT MIT

0.2766 0.4755 -1.4109 -0.7661 0.2540 2.5231 -0.1943 0.6601

0.2792 0.4001 -1.3285 -0.7275 0.2010 2.4317 0.5675

0.2796 0.4535 -1.2879 -0.6740 2.4400 0.6172

0.2831 0.2300 -1.4920 2.3869 0.3995

Plots of the backwards-selection regression results (model outputs from 6, 5, 4

and 3 feature networks) are shown in Figure 12. For the sake of comparison, repeated

regression traces are shown as solid lines with the notional flight test results displayed as

a dashed line. As shown, the LogReg results closely overlay each other; making it seem

as if only one plot is shown.

38

Figure 12: 3-Factor Backwards Regression Results

Error statistics from Table 8 and the log-reg plot from Figure 12 show little

change with the removal of the selected features. Therefore, the feature selection results

suggest the following features for use in the neural network: Level 1 Type A, MIT, and

Previous Year Flight Test. The three features also happen to coincide with subject matter

expert opinion (Bredehoeft, 2002), lending validity to the feature selection techniques

used.

Using the aforementioned rationale, with notional flight test data included, a

matrix of input vectors results as illustrated by Table 9:

4 Logistic
Regression
Plots

39

Table 9: Missile Test Data

 ALCM Model Features Target
FY MIT Level 1 A Prev Yr Flt Test

1990 93.88% 82.66% 67.00% 75.00%
1991 96.84% 81.87% 75.00% 75.00%
1992 99.10% 78.63% 75.00% 50.00%
1993 98.18% 79.57% 50.00% 67.00%
1994 98.75% 80.43% 67.00% 75.00%
1995 96.84% 81.22% 75.00% 50.00%
1996 99.00% 79.07% 50.00% 67.00%
1997 97.96% 78.05% 67.00% 75.00%
1998 98.65% 79.58% 75.00% 100.00%
1999 97.67% 73.49% 100.00% 100.00%
2000 99.37% 83.46% 100.00% 100.00%
2001 99.21% 71.10% 100.00% 75.00%
2002 99.46% 55.15% 75.00% 100.00%

Matlab Prototype

With the preparatory work completed, it is now possible to develop a model to

predict the desired reliability. Although the final version is a standalone model, written

in VBA and nested in the same MS Excel workbook as the database, the majority of the

development and validation is Matlab. The code is presented in full in Appendix F.

For developmental purposes, the matrix of input values (Table 9, columns 2 – 5)

is hard coded into the file. The user sets the number of years upon which the networks

will train as well as the number of out-years to predict. The same matrix is used in each

network in turn – logistic regression, feed-forward neural network and radial basis

function network (Figure 13).

40

Input
Data

Log
Reg

FFN

RBFN

GEM Reliability
Estimates

Reliability Model

Input
Data

Log
Reg

FFN

RBFN

GEM Reliability
Estimates

Reliability Model
Figure 13: Reliability Model Block Diagram

Using training algorithms given in class notes (Bauer, 2002) and the Looney text

(Looney, 1977: 99-100, 125), the different networks train and generate outputs. The

weights developed in training are used to run the remaining exemplars through the

networks and generate prediction outputs. Training and prediction outputs are presented

graphically along with the target vector for the sake of comparison (Figures 14 and 15).

The cluster of traces running through the center of each chart suggests similar estimate

and predictive outputs from the different networks in the model. The numerical model

results are also displayed in tabular format (Tables 10 and 11).

41

Figure 14: Current Year Reliability Estimates

Table 10: Current Year Reliability Estimates

 FY90 FY91 FY92 FY93 FY94 FY95 FY96
ZLR 0.7253 0.7659 0.7761 0.6521 0.7357 0.7677 0.6545
ZFF 0.7026 0.7340 0.7574 0.6949 0.6970 0.7209 0.6801
ZRBF 0.6698 0.7232 0.7664 0.6654 0.7103 0.7310 0.6717
ZGEM 0.6995 0.7413 0.7667 0.6707 0.7145 0.7400 0.6687

 FY97 FY98 FY99 FY00 FY01 FY02

ZLR 0.7419 0.7732 0.8711 0.8543 0.8757 0.8313
ZFF 0.6917 0.7175 0.9302 0.8998 0.9381 0.9473
ZRBF 0.7345 0.7547 0.9249 0.8298 0.9456 0.9193
ZGEM 0.7227 0.7486 0.9085 0.8614 0.9195 0.8988

42

* Trace dropoffs due to Matlab graphing limitations.

Figure 15: 24-month Reliability Prediction

Table 11: 24-month Reliability Prediction

 FY90 FY91 FY92 FY93 FY94 FY95 FY96 FY97
ZLR 0.7564 0.7619 0.7618 0.7494 0.7586 0.7615
ZFF 0.8009 0.7751 0.7646 0.7621 0.7332 0.7251
ZRBF 0.6262 0.6973 0.7583 0.4836 0.7436 0.7457
ZGEM 0.7140 0.7426 0.7604 0.6519 0.7583 0.7565

 FY98 FY99 FY00 FY01 FY02 FY03 FY04
ZLR 0.7497 0.7568 0.7620 0.7701 0.7761 0.7700 0.7501
ZFF 0.7279 0.7620 0.7873 0.8069 0.8026 0.8024 0.8013
ZRBF 0.9889 0.9593 0.7457 0.8154 0.7808 0.8294 0.7655
ZGEM 0.8329 0.8303 0.7562 0.7830 0.7791 0.7562 0.7750

43

Code Validation

Although the Matlab code follows the higher-level training algorithms as

previously discussed, the code must be validated against a problem with a known answer

to determine if it is performing correctly.

The full validation code is presented in Appendix G. For the logistic regression

network, a set of 30 data points is randomly drawn over the range [1,10] and a target

vector is developed using the logistic function:
))(exp(1

1)(
1 x

xt
o ⋅+−+

=
ββ

. The

network trains on the first 20 points and predicts on the last 10 points. Both sets of data

are plotted to show coincidence. If the network is coded properly, the network training

and prediction outputs should plot a line that is near identical to the input data set and

produce weights such that 5.1−=oβ and 6.01 =β . Figure 16 shows the results of the

logistic regression verification code. The network results plot easily matches the target

values and the calculated weights are w = -1.4999 0.6000, supporting the contention that

the code logic is performing as expected.

44

Figure 16: Logistic Regression Validation

The other two networks (feed forward and radial basis function) are another

matter. The code for the feed forward network and the radial basis function network is

robust enough to be used for classification as well as estimation, so the XOR problem

serves as a means for verification. The code presented in Appendix G is identical to the

model in Appendix F except the input matrix consists of two columns of uniformly

generated numbers between [-1, 1]. The columns correspond to X and Y Cartesian

coordinates (Figure 17).

45

Figure 17: Random Input Data Classification

A corresponding target vector is generatied based upon the categorization of the

data into two classes: (0,1) for quad 1 or 3 membership, (1,0) for quad 2 or 4

membership. A confusion matrix is calculated at the end of the code as a measure of

classification accuracy. As a naming convention, quad 1 or 3 membership is given as

positive while quad 2 or 4 membership is given as negative. Results from the confusion

matrices are shown in Table 12.

2 (-) 1 (+)

4 (-) 3 (+)

46

Table 12: Network Verification Confusion Matrices

If the networks are coded and functioning properly, the confusion matrices will

load heaviest in the ‘true positive’ and ‘true negative’ cells. The confusion matrices

produced by the validation codes support the contention that the code for the feed

forward and radial basis function networks are coded, training and predicting properly.

Fusion

The model generates three outputs that need to be fused into a single estimate of

free-flight reliability. Per the generalized ensemble method, network outputs are

Output Example
Actual Pos Neg
Pos True Pos False Neg
Neg False Pos True Neg

Output FF Training Results
Actual Pos Neg
Pos 10 0
Neg 0 10

Output FF Test Results
Actual Pos Neg
Pos 5 1
Neg 0 4

Output RBF Training Results
Actual Pos Neg
Pos 11 0
Neg 0 9

Output RBF Test Results
Actual Pos Neg
Pos 5 1
Neg 1 3

47

combined into a single output matrix from which a matrix of correlation coefficients is

generated. Using the formulae described in Chapter 2 of this document, the model

calculates weights that are applied to the network outputs and then summed to provide a

single estimate of reliability. Figure 18 illustrates an example of the GEM method as

applied to the outputs generated by the model from the matrix of model inputs (Table 9).

Table 13: Training Outputs

FY LR FF RBF
90 0 0 0
91 0 0 0
92 77.64% 49.86% 60.37%
93 78.27% 79.35% 74.50%
94 78.26% 88.23% 73.89%
95 76.73% 74.34% 47.69%
96 77.85% 77.55% 79.10%
97 78.24% 69.67% 72.20%
98 76.75% 73.02% 97.27%
99 77.67% 85.00% 92.95%
00 78.28% 86.88% 89.91%
01 79.36% 92.58% 90.94%
02 79.96% 88.33% 89.07%

Table 14: Correlation Matrix

1 0.532873 0.370005
0.532873 1 0.557086
0.370005 0.557086 1

∑ ∑
∑

−

−

=
k j kj

j ij
i C

C
1

1

α (27)

Table 15: GEM Weights

 LR FF RBF
iα 0.35427 0.296639 0.349091

Multiply elements in each column by the associated weight and add across the rows.

e.g. 7940.349091.9094.296639.9258.35427.7936.01 =×+×+×=FYR (28)

Table 16: Fused Outputs

FY 90 91 92 93 94 95 96 97

ZGEM 0 0 .6337 .7728 .7969 .6588 .7820 .7359

FY 98 99 00 01 02 03 04
ZGEM .8281 .8518 .8489 .8733 .8562 .8711 .7940 * Predictions

Figure 18: Generalized Ensemble Method (24-month Prediction Example)

48

Conversion to VBA

Once the model logic is determined and validated, the code is converted into VBA

and nested in the worksheet containing the missile ground test database. In the course of

conversion, the name ALCM/ACM Reliability Estimation System (AARES) was selected

for the model. The full version of the VBA code is presented in Appendix H. The

majority of the conversion consists of syntax changes and partitioning the Matlab code

into major subroutines and adding a graphical user interface as well as other utility

subroutines as listed below.

1. GUI – collects user input parameters

2. Main – calls all other subroutines based upon GUI inputs

3. Capture – captures model input exemplars and target vector

4. Logistic Regression Network – calculates reliability estimates and presents them
in tabular format

5. Feed-Forward Neural Network – calculates reliability estimates and presents

them in tabular format

6. Radial Basis Function Network – calculates reliability estimates and presents
them in tabular format

7. Fusion – fuses selected network outputs into a single number per year and

presents them in tabular format

8. Error – calculates sum of squared errors (SSE), mean squared errors (MSE) and
root mean squared errors (RMSE) of each network output

9. Charting – presents a graphical representation of the model outputs

49

IV. Model Adequacy

As stated previously in Chapter 1, the user desires a simple-to-use, standalone

model that uses existing data and data collection, and provides a single estimate of cruise

missile reliability up to 24 months in the future.

The user starts on the worksheet containing the features selected from an existing

ground test database, and flight test results collected over the past 13 years. On the

worksheet is a single button that starts the model and brings up the GUI (Figure 18).

Figure 19: Model Starting Worksheet

Pressing the “AARES” button brings up the dialog box that allows the user to

select the level of user interaction desired: Custom or Quick Estimate (Figure 19).

50

Figure 20: User Interaction Dialog Box

“Custom” allows the user to set parameters for training, out-year prediction, runs

over which to average, networks to use and associated stepsize, and number of middle

layer neurodes for the FFN (if selected). Instructions for entering data are included in

dialog box. Preset values are present in the input windows, pull-downs appear for

entering the years for training and out-year prediction, and placing the cursor over an

empty input box prompts a “pop-up” suggestion for entering a parameter. Checks are in

place to ensure the user selects at least one network and enters appropriate input box

values (non-negative, numeric, ranging between 0 and 1, etc…see Figure 20).

51

Figure 21: Model Custom GUI

“Quick Estimate” allows the user to get a desired reliability estimate with minimal

input. The only required input is out-year prediction; all other values are preset in the

code based upon best estimates divined in the course of model design (Figure 21).

52

Figure 22: Quick Estimate Input Dialog Box

After all inputs have been entered, the user presses the “Run” button and the

model calculates reliability estimates based upon the inputs. If the “Custom” option is

selected, reliability estimates are presented in tabular format along with error estimates

and a chart presenting a graphical representation of the model outputs (Figure 20).

53

Figure 23: AARES Model Outputs – Custom

For best results, the user should select one network, start with the suggested

model parameters, and observe the model-generated chart and error values. The user

should then vary the stepsize to fit the best curve to the target vector. Once the user has

followed this procedure for each network, he/she can make the decision on which output

(logistic regression, feed forward, radial basis function or fused output) gives the best

reliability estimate. In most cases, the fused output should give the best overall estimate.

If the “Quick Estimate” is desired, the model runs as if all networks were selected

in the “Custom” option and default values were used. At the end of the run, the model

presents a full-size chart with text in the upper-right corner displaying the desired

reliability estimate (Figure 23).

54

Figure 24: AARES Model Outputs – Quick Estimate

As designed, the AARES model meets all the criteria set by the user (easy to use,

standalone, existing data sources, single answer reliability estimate, 24-month prediction

capability).

55

V. Conclusions

As stated in previously, the focus of this thesis is estimating ALCM free flight

reliability. Following the steps as listed in Chapter 3 should produce equally accurate

results when using ACM flight test results or captive carry test results for either missile.

It is merely a matter of compiling the database, selecting proper features, then applying

the AARES VBA code to the data.

With regard to maintenance, the user will be required to maintain the ground and

flight test database. The pass rates must be present on the “model” worksheet for

AARES to capture them and calculate the estimates. Simply “paste linking” the values

into the worksheet as with previous years will suffice. The model will self-adjust and

capture the new values as they are added. A new year of data will not be captured,

however, until flight test results have been added.

Furthermore, the VBA code has room for expansion. The current version utilizes

three neural networks: logistic regression, feed forward and radial basis function. Dozens

more exist, and once properly coded and validated, additional neural network subroutines

could be added at the user’s discretion.

One should note that AARES does not use time (FY) as an explicit model feature.

In the course of development, some experimentation using FY as a feature was

performed, but feature selection techniques eliminated the variable from consideration.

Furthermore, the scale of the variable is different from the rest of the model features –

resulting in poor estimates and large errors. As a result, FY has not been included in the

model other than as a label for the x-axis. Instead, the model relies upon past ground and

56

flight test pass rates to estimate reliability. If the user truly desires to have time included

in the model, it becomes merely a matter of adding another column and making some

minor code edits. AARES self-adjusts to feature size as it does to exemplars.

As a final note, the estimates produced by the AARES model are generated by

statistically sound techniques, but the model suffers from the same shortcoming as

previous logistic regression efforts: lack of validation data. Specifically, the cruise

missile program simply does not have enough annual flight test events to provide a

representative sample of the stockpile and thus generate a truly representative target

vector for the model. AARES alleviates the problem by using numerous ground tests as

model features for estimating free flight reliability, however until the number of shots per

year increases, the model outputs cannot be validated.

57

Appendix A: Acronyms

AARES ALCM/ACM Reliability Estimation System

ACC Air Combat Command

ACM Advanced Cruise Missile

ACR Aircrew Reliability

AF&F Arming, Fuzing and Firing

AGM-86 ALCM

AGM-129 ACM

AGR Aircraft Generation Reliability

ALCM Air Launched Cruise Missile

ASR Aircraft Systems Reliability

Auto-Cal Automatic Calibration

BA Boost Adjustment

BIT Built-In Test

BR Boost Reliability

BRT Battle Readiness Test

CA Cruise Adjustment

CCPR Captive Carry Prelaunch Reliability

CCR Captive Carry Reliability

CCTR Captive Carry Transit Reliability

CDF Cumulative Distribution Function

CR Countdown Reliability

CR1 Cruise Reliability

58

CR2 Carrier Reliability

CSRL Common Strategic Rotary Launcher

DOE Department of Energy

D/R Decoder/Receiver

DR Deployment Reliability

FFCR Free Flight Cruise Reliability

FFER Free Flight Endgame Reliability

FFN Feed-forward Neural Network

FFR Free Flight Reliability

FFTR Free Flight Transition to Cruise Reliability

FGT Functional Ground Test

GEM Generalized Ensemble Method

GUI Graphical User Interface

ICBM Intercontinental Ballistic Missile

IMF Integrated Maintenance Facility

INE Inertial Navigation Element

JHU-APL Johns Hopkins University Applied Physics
Laboratory

JILT Joint Integrated Lab Test

LI Launch Interval

LLT Loaded Launcher Test

LPT Loaded Pylon Test

LR Launch Reliability

59

LR Logistic Regression

LWA Launch Window Availability

MA Missile Adjustment

MIT Missile Interface Test

MR Missile Reliability

MSE Mean Squared Error

NAT Navigation Accuracy Test

NSWC Naval Surface Warfare Center

OAS Offensive Avionics System

OC-ALC Oklahoma City Air Logistics Center

PFR Platform Reliability

PLA Post-launch Assessment

PR Payload Reliability

RBFN Radial Basis Function Network

RMSE Root Mean Squared Error

RR Reentry Reliability

RRB Reentry Burst Reliability

RRI Reentry Inflight Reliability

RRS Reentry Separation Reliability

RSR Release System Reliability

SIOP Single Integrated Operational Plan

SIT System Interface Test

SLBM Sub-launched Ballistic Missile

60

SLT Stockpile Lab Test

SPACECOM Space Command

SPO System Program Office

SSE Sum of Squared Errors

TLAM Tomahawk Land Attack Missile

TO Technical Order

VBA Visual Basic for Applications

USSTRATCOM United States Strategic Command

WAM Warhead Arming Monitor

WDR Weapon Delivery System Reliability

WSR Weapon System Reliability

WSRT Weapon System Readiness Test

61

Appendix B: Notional Flight Test Data
 Intercept -2.8380919
 Coeff 0.23892478

FY Result Number Relobs Rel Est Log Reg Results
1 1 1 0.93 0.069192042
1 1 1 0.93 0.069192042
1 1 1 0.93 0.069192042
1 1 1 0.93 0.069192042
1 1 1 0.93 0.069192042
1 1 1 0.93 0.069192042
1 1 1 0.93 0.069192042
1 1 1 0.93 0.069192042
1 1 1 0.93 0.069192042
1 1 1 1 0.93 0.069192042
2 1 1 0.91 0.086255093
2 1 1 0.91 0.086255093
2 1 1 0.91 0.086255093
2 1 1 0.91 0.086255093
2 1 1 0.91 0.086255093
2 0 1 0.91 0.086255093
2 1 1 0.91 0.086255093
2 1 1 0.88 0.91 0.086255093
3 1 1 0.89 0.107042068
3 1 1 0.89 0.107042068
3 1 1 0.89 0.107042068
3 0 1 0.89 0.107042068
3 1 1 0.8 0.89 0.107042068
4 1 1 0.87 0.132114276
4 1 1 0.87 0.132114276
4 1 1 0.87 0.132114276
4 1 1 1 0.87 0.132114276
5 1 1 0.84 0.161993723
5 1 1 0.84 0.161993723
5 0 1 0.84 0.161993723
5 1 1 0.75 0.84 0.161993723
6 1 1 0.80 0.197096161
6 1 1 0.80 0.197096161
6 1 1 0.80 0.197096161
6 0 1 0.75 0.80 0.197096161
7 1 1 0.76 0.237647885
7 1 1 0.76 0.237647885
7 0 1 0.67 0.76 0.237647885
8 0 1 0.72 0.28359598
8 1 1 0.5 0.72 0.28359598
9 1 1 0.67 0.334529581
9 1 1 1 0.67 0.334529581

10 0 1 0.61 0.389635627
10 1 1 0.61 0.389635627
10 1 1 0.67 0.61 0.389635627

62

Appendix C: Ground Test Data

CY LLT A LLT B SIT MIT Level 1 A Level 1 B Level 3 B INE Prev Yr Flt Test
90 96.03% 58.70% 88.95% 93.88% 82.66% 27.00% 33.33% 94.10% 67.00% 75.00%
91 95.63% 52.83% 96.34% 96.84% 81.87% 16.00% 33.33% 95.60% 75.00% 75.00%
92 95.32% 36.11% 98.79% 99.10% 78.63% 33.63% 25.00% 97.45% 75.00% 50.00%
93 93.98% 82.50% 93.64% 98.18% 79.57% 29.52% 33.33% 95.15% 50.00% 67.00%
94 93.13% 73.83% 96.74% 98.75% 80.43% 24.00% 46.15% 95.42% 67.00% 75.00%
95 94.44% 81.82% 94.90% 96.84% 81.22% 23.68% 64.52% 95.37% 75.00% 50.00%
96 95.04% 92.56% 84.62% 99.00% 79.07% 40.00% 84.00% 96.94% 50.00% 67.00%
97 95.00% 80.95% 100.00% 97.96% 78.05% 20.37% 45.45% 94.39% 67.00% 75.00%
98 95.09% 76.92% 93.72% 98.65% 79.58% 38.33% N/R 93.72% 75.00% 100.00%
99 94.97% 77.38% 91.18% 97.67% 73.49% 37.78% 100.00% 93.14% 100.00% 100.00%
00 95.48% 66.67% 100.00% 99.37% 83.46% 47.37% 16.67% 96.48% 100.00% 100.00%
01 96.19% 35.48% 100.00% 99.21% 71.10% 28.95% 0.00% 90.65% 100.00% 75.00%
02 92.06% N/R #DIV/0! 99.46% 55.15% 34.78% 50.00% 84.13% 75.00% 100.00%

 estimated data
 N/R none recorded

63

Appendix D: SAS Factor Analysis Output

 The SAS System 15:28 Friday, January 17, 2003 3

 The FACTOR Procedure
 Initial Factor Method: Principal Components

 Prior Communality Estimates: ONE

 Eigenvalues of the Correlation Matrix: Total = 6 Average = 1

 Eigenvalue Difference Proportion Cumulative

 1 2.57942941 0.93849633 0.4299 0.4299
 2 1.64093307 0.64655285 0.2735 0.7034
 3 0.99438022 0.49333963 0.1657 0.8691
 4 0.50104060 0.25566604 0.0835 0.9526
 5 0.24537455 0.20653240 0.0409 0.9935
 6 0.03884215 0.0065 1.0000

 3 factors will be retained by the NFACTOR criterion.

 Factor Pattern

 Factor1 Factor2 Factor3

 LLTA LLTA 0.68941 0.48964 -0.34507
 SIT SIT -0.26020 0.78118 0.28509
 MIT MIT -0.56918 0.29065 0.64160
 Level1A Level1A 0.94058 0.13506 0.22390
 INE INE 0.87664 0.11866 0.42382
 PrevYr PrevYr -0.24349 0.82106 -0.39067

 Variance Explained by Each Factor

 Factor1 Factor2 Factor3

 2.5794294 1.6409331 0.9943802

 Final Communality Estimates: Total = 5.214743

 LLTA SIT MIT Level1A INE PrevYr

 0.83410138 0.75922666 0.82009747 0.95306195 0.96220513 0.88605012

 The SAS System 15:28 Friday, January 17, 2003 4

 The FACTOR Procedure
 Rotation Method: Varimax

 Orthogonal Transformation Matrix

 1 2 3

 1 0.89460 -0.05157 -0.44389
 2 0.24031 0.89299 0.38056
 3 0.37676 -0.44712 0.81126

 Rotated Factor Pattern

 Factor1 Factor2 Factor3

 LLTA LLTA 0.60440 0.55597 -0.39962
 SIT SIT 0.06236 0.58353 0.64407
 MIT MIT -0.19761 0.00203 0.88377
 Level1A Level1A 0.95825 -0.02802 -0.18447
 INE INE 0.97243 -0.12875 -0.00015
 PrevYr PrevYr -0.16770 0.92043 0.10361

 Variance Explained by Each Factor

 Factor1 Factor2 Factor3

 2.3002360 1.5141744 1.4003323

 Final Communality Estimates: Total = 5.214743

 LLTA SIT MIT Level1A INE PrevYr

 0.83410138 0.75922666 0.82009747 0.95306195 0.96220513 0.88605012

64

Appendix E: MATLAB Logistic Regression Code

clc
clear
% input matrix
%MIT Level 1A Prev Yr Flt Test
x=[0.9388 0.8266 0.6700 0.7500
0.9684 0.8187 0.7500 0.7500
0.9910 0.7863 0.7500 0.5000
0.9818 0.7957 0.5000 0.6700
0.9875 0.8043 0.6700 0.7500
0.9684 0.8122 0.7500 0.5000
0.9900 0.7907 0.5000 0.6700
0.9796 0.7805 0.6700 0.7500
0.9865 0.7958 0.7500 1.0000
0.9767 0.7349 1.0000 1.0000
0.9937 0.8346 1.0000 1.0000
0.9921 0.7110 1.0000 0.7500
0.9946 0.5515 0.7500 1.0000];

%number of exemplars upon which to train
tr = 13;
% number of out-years to predict
yr = 0;

% logistic regression (instantaneous)
% output training vector
z=[];
% output prediction vector
zvr=[];
% weight vector
w=[];
% weight gradient vector
dw=[];
%sets nfeat = to the number of columns
nfeat=size(x,2);

% zero out weights
for ii=1:nfeat
 w(ii)=0;
end

%adds a bias column of 1's to the left of side of matrix x
x=[ones(size(x,1),1) x];
%sets number of iterations for code to run through
iter=1000;
%sets stepsize = .001
stepsize=.001;
% used as a comparator to know when to stop increasing iterations
prevtoterr = 1;
% parameter that tells the code when to stop (when decreases in toterr become very small)
toterr = 0;
% transpose x matrix to keep with Looney convention
x=x';

65

% loops through with increasing number of iterations until graph stabilizes
% and converges -- when toterr changes very little
while abs(prevtoterr-toterr) > .001
 prevtoterr=toterr;
 for i=1:iter
 toterr=0.0; % zeros out total error
 for ii=1:nfeat
 dw(ii)=0; % zeros out dw, differential of the error
 end
 for j=1+yr:tr+yr %j runs from 1 down the number of rows
 z(j)=0.0; % initializes Yhatj at zero (estimated value)
 for k=1:nfeat % runs from 1 across the number of columns
 z(j)=z(j)+w(k)*x(k,j-yr); % sets Yhat = previous_Yhat + weight*current x_value, x_value
changes across the columns
 end % does this across the columns
 z(j)=(1./(1.+exp(-1.0*z(j)))); % call the sigmoid file and do it's thing with the z_matrix element
 for l=1:nfeat %l runs across the columns
 dw(l)=(z(j)-x(nfeat+1,j))*z(j)*(1.-z(j))*x(l,j-yr); % cumes all the differentials of the errors
 w(l)=w(l)-stepsize*dw(l); % steps in the direction opposite the error, converges toward the "true"
weights/b_knot and b_one
 end
 toterr=toterr+(z(j)-x(nfeat+1,j))^2; % cumes total error per iteration
 end
 end
 toterr;
 % sets number of iterations to run through next depending upon changes
 % in toterr
 if abs(prevtoterr-toterr)>.01
 iter = iter+1000;
 else
 iter = iter+500;
 end
end

% plot the regression and the flight test results
axis([0 16 .5 1.1])
xlabel('Calendar Year')
ylabel('Reliability %')
hold on
plot(x(nfeat+1,:),'m --')
plot(z,'b')

% logreg prediction code
if tr < size(x,2)
 for n=tr+1+yr:size(x,2)+yr
 zvr(n)=0.0;
 for k=1:nfeat
 zvr(n) = zvr(n) + w(k)*x(nfeat+1,n-yr);
 end % end k loop
 zvr(n)=1/(1+exp(-(zvr(n))));
 end % end n loop
 plot(zvr,'b :')
end % end year check

66

Appendix F: Matlab Reliability Model Code

clc
clear
% input matrix
%MIT Level 1A Prev Yr Flt Test
x=[0.9388 0.8266 0.6700 0.7500
0.9684 0.8187 0.7500 0.7500
0.9910 0.7863 0.7500 0.5000
0.9818 0.7957 0.5000 0.6700
0.9875 0.8043 0.6700 0.7500
0.9684 0.8122 0.7500 0.5000
0.9900 0.7907 0.5000 0.6700
0.9796 0.7805 0.6700 0.7500
0.9865 0.7958 0.7500 1.0000
0.9767 0.7349 1.0000 1.0000
0.9937 0.8346 1.0000 1.0000
0.9921 0.7110 1.0000 0.7500
0.9946 0.5515 0.7500 1.0000];

%number of exemplars upon which to train
tr = 13;
% number of out-years to predict
yr = 0;

% logistic regression (instantaneous)
% output training vector
z=[];
% output prediction vector
zvr=[];
% weight vector
w=[];
% weight gradient vector
dw=[];
%sets nfeat = to the number of columns
nfeat=size(x,2);

% zero out weights
for ii=1:nfeat
 w(ii)=0;
end

%adds a bias column of 1's to the left of side of matrix x
x=[ones(size(x,1),1) x];
%sets number of iterations for code to run through
iter=1000;
%sets stepsize = .001
stepsize=.001;
% used as a comparator to know when to stop increasing iterations
prevtoterr = 1;
% parameter that tells the code when to stop (when decreases in toterr become very small)
toterr = 0;
% transpose x matrix to keep with Looney convention
x=x';

67

% loops through with increasing number of iterations until graph stabilizes
% and converges -- when toterr changes very little
while abs(prevtoterr-toterr) > .001
 prevtoterr=toterr;
 for i=1:iter
 toterr=0.0; % zeros out total error
 for ii=1:nfeat
 dw(ii)=0; % zeros out dw, differential of the error
 end
 for j=1+yr:tr+yr %j runs from 1 down the number of rows
 z(j)=0.0; % initializes Yhatj at zero (estimated value)
 for k=1:nfeat % runs from 1 across the number of columns
 z(j)=z(j)+w(k)*x(k,j-yr); % sets Yhat = previous_Yhat + weight*current x_value, x_value
changes across the columns
 end % does this across the columns
 z(j)=(1./(1.+exp(-1.0*z(j)))); % call the sigmoid file and do it's thing with the z_matrix element
 for l=1:nfeat %l runs across the columns
 dw(l)=(z(j)-x(nfeat+1,j))*z(j)*(1.-z(j))*x(l,j-yr); % cumes all the differentials of the errors
 w(l)=w(l)-stepsize*dw(l); % steps in the direction opposite the error, converges toward the "true"
weights/b_knot and b_one
 end
 toterr=toterr+(z(j)-x(nfeat+1,j))^2; % cumes total error per iteration
 end
 end
 toterr;
 % sets number of iterations to run through next depending upon changes
 % in toterr
 if abs(prevtoterr-toterr)>.01
 iter = iter+1000;
 else
 iter = iter+500;
 end
end

% plot the regression and the flight test results
axis([0 16 .5 1.1])
xlabel('Calendar Year')
ylabel('Reliability %')
hold on
plot(x(nfeat+1,:),'m --')
plot(z,'b')

% logreg prediction code
if tr < size(x,2)
 for n=tr+1+yr:size(x,2)+yr
 zvr(n)=0.0;
 for k=1:nfeat
 zvr(n) = zvr(n) + w(k)*x(k,n-yr);
 end % end k loop
 zvr(n)=1/(1+exp(-(zvr(n))));
 end % end n loop
 plot(zvr,'b :')
end % end year check

68

% reset input matrix, strip off bottom row of flight test results
flttest=x(nfeat+1,:);
x(nfeat+1,:)=[];
nfeat=size(x,1);
ncols=size(x,2);

% average of output runs
zzz=[];
% average of prediction runs
zvv=[];
% lower layer output matrix
zz=[];
% verification output matrix
zv=[];

% loop through a few times to get an average of the output values
for count=1:10
% set stepsize
nu=.7;
% upper layer output row vector
y=[];
% middle layer weights matrix
w=[];
% upper layer weights matrix
u=[];
% middle layer summations weight gradients
dw=[];
% matrix of targets -- flight test results
t=flttest;
% number of midddle layer neurodes
M=5;
% number of output layer neurodes
J=size(t,1);
% number of inputs (features)
N=size(x,1);
% number of exemplars to run through
Q=tr;
% set number of iterations
iter=1500;
% setting initial weights
for m=1:M
 for n=1:N
 w(n,m)=unifrnd(-0.2, 0.2);
 end
 for j=1:J
 u(m,j)=unifrnd(-0.2, 0.2);
 end
end % end m loop, setting initial weights

prevtoterr=1;
toterr=0;
while abs(prevtoterr-toterr)>.001
 prevtoterr=toterr;
 % initialize iterations

69

 for i=1:iter
 toterr=0.0;
 % run down the rows of exemplars
 for q=1+yr:Q+yr
 % zero out outputs
 for j=1:J
 zz(j,q,count)=0;
 end % end j loop, zero out outputs
 for n=1:N
 for m=1:M
 dw(n,m)=0;
 end % end m loop
 end % end n loop, zero out summation portion of middle layer weight gradients
 for m=1:M
 %calculate middle layer outputs
 y(m)=0.0;
 for n=1:N
 y(m) = y(m) + w(n,m)*x(n,q-yr);
 end % end n loop, sum across middle layer prior to squashing
 % calculate sigmoid of middle layer outputs -- squash 'em
 y(m)=1/(1+exp(-(y(m))));
 end % end m loop, middle layer outputs
 % calculate outputs
 for j=1:J
 for m=1:M
 zz(j,q,count) = zz(j,q,count) + u(m,j)*y(m);
 end % end m loop, sum across the outputs prior to squashing
 % calculate sigmoid of outputs -- squash 'em
 zz(j,q,count)=1/(1+exp(-(zz(j,q,count))));
 end % end j loop, new output loop
 % adjust weights
 for m=1:M
 % calculate new upper layer weights
 for j=1:J
 u(m,j) = u(m,j) + nu*((t(j,q) - zz(j,q,count))*zz(j,q,count)*(1 - zz(j,q,count))*y(m));
 end % end j loop, uppper layer weight update
 % calculate summation portion of gradient for middle layer
 for n=1:N
 for j=1:J
 dw(n,m) = dw(n,m) + (t(j,q) - zz(j,q,count))*(zz(j,q,count)*(1 - zz(j,q,count)))*u(m,j);
 end % end j loop cume portion of middle layer weight gradient
 % calculate middle layer weights
 w(n,m) = w(n,m) + nu*dw(n,m)*(y(m)*(1 - y(m))*x(n,q-yr));
 end % end n loop middle layer weight adjustments
 end % end m loop, weight adjustments
 % calculate SSE
 for j=1:J
 toterr=toterr+(zz(j,q,count)-t(j,q))^2;
 end % end toterr cume loop
 end % end q loop number of exemplars on which to train
 end %end iteration loop
 if abs(prevtoterr-toterr)>.005
 iter = iter+100;
 else

70

 iter = iter+50;
 end % end iteration step-check loop
end % end .001 while loop

% verify weights developed during training -- attempt to predict current year or out-year flight
% test results within data set
if tr < size(x,2)
 for q=Q+1+yr:size(x,2)+yr
 for j=1:J
 zv(j,q,count)=0.0;
 end
 for m=1:M
 y(m)=0.0;
 for n=1:N
 y(m) = y(m) + w(n,m)*x(n,q-yr);
 end
 y(m)=1/(1+exp(-(y(m))));
 for j=1:J
 zv(j,q,count) = zv(j,q,count) + u(m,j)*y(m);
 end
 end
 for j=1:J
 zv(j,q,count)=1/(1+exp(-(zv(j,q,count))));
 end
 end % end verification loop
end % end prediction test
end % end count loop

% calculate average of the runs and display
zzz = mean(zz,3);
plot(zzz,'r')
hold on

if tr < size(x,2)
 zvv = mean(zv,3);
 plot(zvv,'r :')
end

% RBFN code
% set output vectors
zrb=[];
zrbt=[];
zzrb=[];
zzrbt=[];

% loop through a few times and get an averaqe
for count=1:10
% set stepsize
nu=1.0;
% upper layer output row vector
y=[];
% middle layer neurode centers
v=[];
% upper layer weights matrix

71

u=[];
% middle layer summations weight gradients
dw=[];
% summation matrix for distance calculation
addup=[];
% number of inputs (features)
N=size(x,1);
% number of output layer neurodes
J=size(t,1);
% number of exemplars to run through
Q=tr;
% number of midddle layer neurodes
M=Q;
% set number of iterations
iter=100;
%compute single spread parameter
sigma=1/((2*M)^(1/N));
%sigma = 0.9;
% setting initial weights, neurode centers, and neurode spread parameters
for m=1:M
 for j=1:J
 u(m,j)=unifrnd(-0.5, 0.5);
 end % end J loop
end % end m loop, setting initial weights
v=x;

% used as a comparator to know when to stop increasing iterations
prevtoterr = 1.0;
% parameter that tells the code when to stop (when decreases in toterr become very small)
toterr = 0;
% calculate difference vector
for q=1+yr:Q+yr
 for m=1:M
 distnc=0;
 for n=1:N
 distnc = distnc + (x(n,q-yr)-v(n,m))^2;
 end
 addup(m,q) = distnc;
 end
end

% compute y(m,q)
for q=1+yr:Q+yr
 for m=1:M
 if q == m
 y(m,q)=1;
 else
 y(m,q)=exp(-(addup(m,q))/(2*(sigma^2)));
 end % end if test
 end % end m loop
end % end q loop

% train the network
while abs(prevtoterr-toterr)>.00001

72

 prevtoterr=toterr;
 % initialize iterations
 for i=1:iter
 toterr=0;
 for m=1:M
 for j=1:J
 du(m,j)=0;
 for q=1+yr:Q+yr
 dw(j,q)=0;
 end % end q loop
 end % end j loop
 end % end m loop
 % compute new outputs
 for q=1+yr:Q+yr
 for j=1:J
 for m=1:M
 dw(j,q) = dw(j,q) + (u(m,j)*y(m,q));
 end % end m loop
 end % end j loop
 end % end new output loops
 for q=1+yr:Q+yr
 for j=1:J
 zrb(j,q,count) = dw(j,q)/M;
 end % end j loop
 end % end q loop
 % SSE calculation
 for q=1+yr:Q+yr
 for j=1:J
 toterr = toterr + ((t(j,q) - zrb(j,q,count))^2);
 end % end j loop
 end % end error calculation
 if toterr<prevtoterr
 nu=nu*1.04;
 else
 nu=nu*0.92;
 end % end new stepsize check
 % adjust weights
 for m=1:M
 for j=1:J
 for q=1+yr:Q+yr
 du(m,j) = du(m,j) + ((t(j,q) - zrb(j,q,count))*y(m,q));
 end % end q loop
 end % end j loop
 end % end m loop
 for m=1:M
 for j=1:J
 u(m,j) = u(m,j) + ((2*nu)/M)*du(m,j);
 end % end j loop
 end % end m loop
 end % end iteration loop
end % end tolerance loop

% test middle layer outputs
ytest=[];

73

% verify test data
if tr < size(x,2)
 for q=Q+1+yr:size(x,2)+yr
 % zero out output matrix
 for j=1:J
 zrbt(j,q,count)=0;
 end % end j loop
 % calculate distances from center
 for m=1:M
 distnc=0;
 for n=1:N
 distnc = distnc + (x(n,q-yr)-v(n,m))^2;
 end % end n loop
 addup(m,q) = distnc;
 end % end m loop
 end % end q loop
 % compute ytest(m,q)
 for q=Q+1+yr:size(x,2)+yr
 for m=1:M
 ytest(m,q)=exp(-(addup(m,q))/(2*(sigma^2)));
 end % end m loop
 end % end q loop
 % compute outputs
 for q=Q+1+yr:size(x,2)+yr
 for j=1:J
 adduys=0;
 for m=1:M
 adduys=adduys+u(m,j)*ytest(m,q);
 end % end m loop
 zrbt(j,q,count)=adduys/M;
 end % end j loop
 end % end q loop
end % end prediction test
end % end count loop

zzrb=mean(zrb,3);
plot(zzrb,'k');

if tr < size(x,2)
 zzrbt=mean(zrbt,3);
 plot(zzrbt,'k :')
end

% fuse the outputs from the three nets
% set up matrices and strip off any zero rows
Z=[z' zzz' zzrb']
for i=1:yr
 Z(1,:)=[];
end

corrZ=corrcoef(Z)
denomalpha=0;
alpha=[];

74

Zgem=[];
ZZgem=[];

for i=1:size(corrZ,2)
 for j=1:size(corrZ,1)
 denomalpha=denomalpha+(1/corrZ(i,j));
 end
end

for i=1:size(corrZ,2)
 numalpha=0;
 for j=1:size(corrZ,1)
 numalpha=numalpha+(1/corrZ(i,j));
 end
 alpha(i)=numalpha/denomalpha;
end

for q=1:size(Z,1)
 Zgem(q)=0;
 for i=1:size(Z,2)
 Zgem(q)=Zgem(q)+alpha(i)*Z(q,i);
 end
end

% add offset back into fused results vector
if yr > 0
 for i=1:yr
 Zgem=[zeros(size(Zgem,1),1),Zgem];
 end
end

Zgem
plot(Zgem, 'g')

% calculate fused prediction
if tr < size(x,2)
 ZZ=[zvr' zvv' zzrbt']
 for i=1:tr+yr
 ZZ(1,:)=[];
 end

 for q=1:size(ZZ,1)
 ZZgem(q)=0;
 for i=1:size(ZZ,2)
 ZZgem(q)=ZZgem(q)+alpha(i)*ZZ(q,i);
 end
 end

 % add offset back into fused results vector
 for i=1:tr+yr
 ZZgem=[zeros(size(ZZgem,1),1),ZZgem];
 end
 ZZgem
 plot(ZZgem, 'g :')

75

end % end if check

% calculate RMSEs of the two methods
sumrmselr=0;
sumrmseff=0;
sumrmserb=0;
sumrmseZ=0;
rmselr=0;
rmseff=0;
rmserb=0;
rmseZ=0;
% SSE of training points
for q=1+yr:tr+yr
 sumrmselr = sumrmselr + (z(q)-t(1,q-yr))^2;
 sumrmseff = sumrmseff + (zzz(q)-t(1,q-yr))^2;
 sumrmserb = sumrmserb + (zzrb(q)-t(1,q-yr))^2;
 sumrmseZ = sumrmseZ + (Zgem(q)-t(1,q-yr))^2;
end
% SSE of prediction points
if tr < size(x,2)
 for q=tr+1+yr:size(x,2)+yr
 sumrmselr = sumrmselr + (zvr(q)-t(1,q-yr))^2;
 sumrmseff = sumrmseff + (zvv(q)-t(1,q-yr))^2;
 sumrmserb = sumrmserb + (zzrbt(q)-t(1,q-yr))^2;
 sumrmseZ = sumrmseZ + (ZZgem(q)-t(1,q-yr))^2;
 end
end
rmselr = sqrt(sumrmselr/size(t,2))
rmseff = sqrt(sumrmseff/size(t,2))
rmserb = sqrt(sumrmserb/size(t,2))
rmseZ = sqrt(sumrmseZ/size(t,2))

% add a legend to the graph
if tr < size(x,2)
 legend('Actual', 'LogReg Training', 'LogReg Prediction', 'FFN Training', 'FFN Prediction', 'RBFN
Training', 'RBFN Prediction', 'Fused Training', 'Fused Prediction', 2)
else
 legend('Actual', 'LogReg Results', 'FFN Results', 'RBFN Results','Fused Results', 2);
end

76

Appendix G: Matlab Validation Code

Logistic Regression Validation
clc
clear
% input matrix
% generate training data points and populate into matrix
x=unifrnd(0,1,30,1);

% gin up a simple relationship between x and y
for i=1:size(x,1)
 t(i)=x(i);
end
t=t';
x=[x t];

% number of out-years to predict
yr = 0;
tr=20;

% logistic regression (instantaneous)
% output training vector
z=[];
% output prediction vector
zvr=[];
% weight vector
w=[];
% weight gradient vector
dw=[];
%sets nfeat = to the number of columns
nfeat=size(x,2);
% zero out weights
for ii=1:nfeat
 w(ii)=0;
end

%adds a bias column of 1's to the left of side of matrix x
x=[ones(size(x,1),1) x];
%sets number of iterations for code to run through
iter=1000;
%sets stepsize = .001
stepsize=.001;
% used as a comparator to know when to stop increasing iterations
prevtoterr = 1;
% parameter that tells the code when to stop (when decreases in toterr become very small)
toterr = 0;
% transpose x matrix to keep with Looney convention
x=x';

% loops through with increasing number of iterations until graph stabilizes
% and converges -- when toterr changes very little
while abs(prevtoterr-toterr) > .00000001
 prevtoterr=toterr;
 for i=1:iter

77

 toterr=0.0; % zeros out total error
 for ii=1:nfeat
 dw(ii)=0; % zeros out dw, differential of the error
 end
 for j=1+yr:tr+yr %j runs from 1 down the number of rows
 z(j)=0.0; % initializes Yhatj at zero (estimated value)
 for k=1:nfeat % runs from 1 across the number of columns
 z(j)=z(j)+w(k)*x(k,j-yr); % sets Yhat = previous_Yhat + weight*current x_value, x_value
changes across the columns
 end % does this across the columns
 z(j)=(1./(1.+exp(-1.0*z(j)))); % call the sigmoid file and do it's thing with the z_matrix element
 for l=1:nfeat %l runs across the columns
 dw(l)=(z(j)-x(nfeat+1,j))*z(j)*(1.-z(j))*x(l,j-yr); % cumes all the differentials of the errors
 w(l)=w(l)-stepsize*dw(l); % steps in the direction opposite the error, converges toward the "true"
weights/b_knot and b_one
 end
 toterr=toterr+(z(j)-x(nfeat+1,j))^2; % cumes total error per iteration
 end
 end
 toterr;
 % sets number of iterations to run through next depending upon changes
 % in toterr
 if abs(prevtoterr-toterr)>.01
 iter = iter+1000;
 else
 iter = iter+500;
 end
end

w
toterr

% logreg prediction code
if tr < size(x,2)
 for n=tr+1+yr:size(x,2)+yr
 zvr(n)=0.0;
 for k=1:nfeat
 zvr(n) = zvr(n) + w(k)*x(k,n-yr);
 end % end k loop
 zvr(n)=1/(1+exp(-(zvr(n))));
 end % end n loop
end % end year check

% plot the regression and the flight test results
axis([0 1 0 1])
xlabel('x')
ylabel('y')
title('Logistic Regression')
hold on

plot(x(2,1),t(1,1),'b *')
plot(x(2,1),z(1),'k +')
plot(x(2,tr+1),zvr(tr+1),'r o')

78

legend('Actual','LogReg Training','LogReg Prediction', 2)
for i=1:size(x,2)
 plot(x(2,i),t(i,1),'b *')
end
for i=1:tr
 plot(x(2,i),z(i),'k +')
end
for i=tr+1:size(x,2)
 plot(x(2,i),zvr(i),'r o')
end

Feed Forward Validation
clc
clear
% input matrix
% generate training data points and populate into matrix
x=unifrnd(-1,1,30,2);

% plot the points
for i=1:size(x,1)
 plot(x(i,2),x(i,1),'*')
 hold on
end

% create target vector based upon discriminator lines
% let (0,1) denote quad 2-4 membership, let (1,0) denote quad 1-3 membership
T=[];

for i=1:size(x,1)
 if (x(i,1) > 0 & x(i,2) > 0) | (x(i,1) < 0 & x(i,2) < 0)
 T(i,1)=1;
 else
 T(i,2)=1;
 end
end

% adds a bias column of 1's to the left of side of matrix x
x=[ones(size(x,1),1) x];

% number of exemplars upon which to train
tr = 20;
% number of years to predict ahead (0=current year estimates)
yr = 0;
% transpose input matrix,
x=x';
% average of output runs
zzz=[];
% average of prediction runs
zvv=[];
% lower layer output matrix
zz=[];
% verification output matrix
zv=[];

79

% loop through a few times to get an average of the output values
for count=1:1
% set stepsize
nu=.01;
% upper layer output row vector
y=[];
% middle layer weights matrix
w=[];
% upper layer weights matrix
u=[];
% middle layer summations weight gradients
dw=[];
% matrix of targets -- flight test results
t=T';
% number of midddle layer neurodes
M=2*size(t,1);
% number of output layer neurodes
J=size(t,1);
% number of inputs (features)
N=size(x,1);
% number of exemplars to run through
Q=tr;
% set number of iterations
iter=1000;
% setting initial weights
for m=1:M
 for n=1:N
 w(n,m)=unifrnd(-0.2, 0.2);
 end
 for j=1:J
 u(m,j)=unifrnd(-0.2, 0.2);
 end
end % end m loop, setting initial weights

prevtoterr=1;
toterr=0;
while abs(prevtoterr-toterr)>.01
 prevtoterr=toterr;
 % initialize iterations
 for i=1:iter
 toterr=0.0;
 % run down the rows of exemplars
 for q=1+yr:Q
 % zero out outputs
 for j=1:J
 zz(j,q,count)=0;
 end % end j loop, zero out outputs
 for n=1:N
 for m=1:M
 dw(n,m)=0;
 end % end m loop
 end % end n loop, zero out summation portion of middle layer weight gradients
 for m=1:M
 %calculate middle layer outputs

80

 y(m)=0.0;
 for n=1:N
 y(m) = y(m) + w(n,m)*x(n,q-yr);
 end % end n loop, sum across middle layer prior to squashing
 % calculate sigmoid of middle layer outputs -- squash 'em
 y(m)=1/(1+exp(-(y(m))));
 end % end m loop, middle layer outputs
 % calculate outputs
 for j=1:J
 for m=1:M
 zz(j,q,count) = zz(j,q,count) + u(m,j)*y(m);
 end % end m loop, sum across the outputs prior to squashing
 % calculate sigmoid of outputs -- squash 'em
 zz(j,q,count)=1/(1+exp(-(zz(j,q,count))));
 end % end j loop, new output loop
 % adjust weights
 for m=1:M
 % calculate new upper layer weights
 for j=1:J
 u(m,j) = u(m,j) + nu*((t(j,q) - zz(j,q,count))*zz(j,q,count)*(1 - zz(j,q,count))*y(m));
 end % end j loop, uppper layer weight update
 % calculate summation portion of gradient for middle layer
 for n=1:N
 for j=1:J
 dw(n,m) = dw(n,m) + (t(j,q) - zz(j,q,count))*(zz(j,q,count)*(1 - zz(j,q,count)))*u(m,j);
 end % end j loop cume portion of middle layer weight gradient
 % calculate middle layer weights
 w(n,m) = w(n,m) + nu*dw(n,m)*(y(m)*(1 - y(m))*x(n,q-yr));
 end % end n loop middle layer weight adjustments
 end % end m loop, weight adjustments
 % calculate SSE
 for j=1:J
 toterr=toterr+(zz(j,q,count)-t(j,q))^2;
 end % end toterr cume loop
 end % end q loop number of exemplars on which to train
 end %end iteration loop
 if abs(prevtoterr-toterr)>.005
 iter = iter+1000;
 else
 iter = iter+500;
 end % end iteration step-check loop
end % end .01 tolerance while loop

% verify weights developed during training -- attempt to predict current year or out-year flight
% test results within data set
if tr < size(x,2)
 for q=Q+1:size(x,2)+yr
 for j=1:J
 zv(j,q,count)=0.0;
 end
 for m=1:M
 y(m)=0.0;
 for n=1:N
 y(m) = y(m) + w(n,m)*x(n,q-yr);

81

 end
 y(m)=1/(1+exp(-(y(m))));
 for j=1:J
 zv(j,q,count) = zv(j,q,count) + u(m,j)*y(m);
 end
 end
 for j=1:J
 zv(j,q,count)=1/(1+exp(-(zv(j,q,count))));
 end
 end % end verification loop
end % end prediction test
end % end count loop

% calculate average of the runs and display
toterr;
zzz = mean(zz,3);

% calculate training confusion matrix
% recall (0,1) denotes quad 2-4 membership, (1,0) denotes quad 1-3 membership
% let 1-3 membership be 'Positive', and 2-4 membership be 'Negative'
TPtr = 0;
FPtr = 0;
TNtr = 0;
FNtr = 0;
TPver = 0;
FPver = 0;
TNver = 0;
FNver = 0;

for q=1:Q
 if zzz(1,q,count)>zzz(2,q,count)
 if t(1,q) == 1
 TPtr = TPtr + 1;
 else
 FPtr = FPtr + 1;
 end
 else
 if t(2,q) == 1
 TNtr = TNtr + 1;
 else
 FNtr = FNtr + 1;
 end
 end
end

for q=Q+1:size(x,2)
 if zv(1,q,count)>zv(2,q,count)
 if t(1,q) == 1
 TPver = TPver + 1;
 else
 FPver = FPver + 1;
 end
 else
 if t(2,q) == 1

82

 TNver = TNver + 1;
 else
 FNver = FNver + 1;
 end
 end
end

postr = [TPtr FPtr];
negtr = [FNtr TNtr];

disp(' FF Training Results')
disp(' Pos Neg')
disp(postr)
disp(negtr)

posver = [TPver FPver];
negver = [FNver TNver];

disp(' FF Test Results')
disp(' Pos Neg')
disp(posver)
disp(negver)

Radial Basis Function Validation Code

%clc
clear
% input matrix
% generate training data points and populate into matrix
x=unifrnd(-1,1,30,2);

% plot the points
for i=1:size(x,1)
 plot(x(i,2),x(i,1),'*')
 hold on
end

% create target vector based upon discriminator lines
% let (0,1) denote quad 2-4 membership, let (1,0) denote quad 1-3 membership
t=[];

for i=1:size(x,1)
 if (x(i,1) > 0 & x(i,2) > 0) | (x(i,1) < 0 & x(i,2) < 0)
 t(i,1)=1;
 else
 t(i,2)=1;
 end
end

% adds a bias column of 1's to the left of side of matrix x
x=[ones(size(x,1),1) x];

% number of exemplars upon which to train
tr = 20;

83

% number of years ahead to predict
yr=0;
% transpose input and target matrices,
x=x';
t=t';
% set stepsize
nu=1.0;
% upper layer output row vector
y=[];
% middle layer neurode centers
v=[];
% upper layer weights matrix
u=[];
% middle layer summations weight gradients
dw=[];
% summation matrix for distance calculation
addup=[];
% number of inputs (features)
N=size(x,1);
% number of output layer neurodes
J=size(t,1);
% number of exemplars to run through
Q=tr;
% number of midddle layer neurodes
M=Q;
% set number of iterations
iter=100;
%compute single spread parameter
sigma=1/((2*M)^(1/N));
%sigma = 0.065;
% setting initial weights, neurode centers, and neurode spread parameters
for m=1:M
 for j=1:J
 u(m,j)=unifrnd(-0.5, 0.5);
 end % end J loop
end % end m loop, setting initial weights
v=x;

% used as a comparator to know when to stop increasing iterations
prevtoterr = 1.0;
% parameter that tells the code when to stop (when decreases in toterr become very small)
toterr = 0;
% calculate difference vector
for q=1:Q
 for m=1:M
 distnc=0;
 for n=1:N
 distnc = distnc + (x(n,q)-v(n,m))^2;
 end
 addup(m,q) = distnc;
 end
end

% compute y(m,q)

84

for q=1:Q
 for m=1:M
 if q == m
 y(m,q)=1;
 else
 y(m,q)=exp(-(addup(m,q))/(2*(sigma^2)));
 end % end if test
 end % end m loop
end % end q loop

while abs(prevtoterr-toterr)>.000001
 prevtoterr=toterr;
 % initialize iterations
 for i=1:iter
 toterr=0;
 for m=1:M
 for j=1:J
 du(m,j)=0;
 for q=1:Q
 dw(j,q)=0;
 end % end q loop
 end % end j loop
 end % end m loop
 % compute new outputs
 for q=1:Q
 for j=1:J
 for m=1:M
 dw(j,q) = dw(j,q) + (u(m,j)*y(m,q));
 end % end m loop
 end % end j loop
 end % end new output loops
 for q=1:Q
 for j=1:J
 z(j,q) = dw(j,q)/M;
 end % end j loop
 end % end q loop
 for q=1:Q
 for j=1:J
 toterr = toterr + ((t(j,q)-z(j,q))^2);
 end % end j loop
 end % end error calculation
 if toterr<prevtoterr
 nu=nu*1.04;
 else
 nu=nu*0.92;
 end % end new stepsize check
 % adjust weights
 for m=1:M
 for j=1:J
 for q=1:Q
 du(m,j)=du(m,j)+((t(j,q)-z(j,q))*y(m,q));
 end % end q loop
 end % end j loop
 end % end m loop

85

 for m=1:M
 for j=1:J
 u(m,j) = u(m,j)+((2*nu)/M)*du(m,j);
 end % end j loop
 end % end m loop
 end % end iteration loop
end % end tolerance loop

% test output matrix
zvrb=[];
% test middle layer outputs
ytest=[];

% verify test data
if tr < size(x,2)
 for q=Q+1:size(x,2)+yr
 % zero out output matrix
 for j=1:J
 zvrb(j,q)=0;
 end % end j loop
 % calculate distances from center
 for m=1:M
 distnc=0;
 for n=1:N
 distnc = distnc + (x(n,q-yr)-v(n,m))^2;
 end % end n loop
 addup(m,q) = distnc;
 end % end m loop
 end % end q loop
 % compute ytest(m,q)
 for q=Q+1:size(x,2)+yr
 for m=1:M
 ytest(m,q)=exp(-(addup(m,q))/(2*(sigma^2)));
 end % end m loop
 end % end q loop
 % compute outputs
 for q=Q+1:size(x,2)+yr
 for j=1:J
 adduys=0;
 for m=1:M
 adduys=adduys+u(m,j)*ytest(m,q);
 end % end m loop
 zvrb(j,q)=adduys/M;
 end % end j loop
 end % end q loop
end % end test code

% calculate training confusion matrix
% recall (0,1) denotes quad 2-4 membership, (1,0) denotes quad 1-3 membership
% let 1-3 membership be 'Positive', and 2-4 membership be 'Negative'
TPtr = 0;
FPtr = 0;
TNtr = 0;
FNtr = 0;

86

TPver = 0;
FPver = 0;
TNver = 0;
FNver = 0;

for q=1:Q
 if z(1,q)>z(2,q)
 if t(1,q) == 1
 TPtr = TPtr + 1;
 else
 FPtr = FPtr + 1;
 end
 else
 if t(2,q) == 1
 TNtr = TNtr + 1;
 else
 FNtr = FNtr + 1;
 end
 end
end

for q=Q+1:size(x,2)
 if zvrb(1,q)>zvrb(2,q)
 if t(1,q) == 1
 TPver = TPver + 1;
 else
 FPver = FPver + 1;
 end
 else
 if t(2,q) == 1
 TNver = TNver + 1;
 else
 FNver = FNver + 1;
 end
 end
end

postr = [TPtr FPtr];
negtr = [FNtr TNtr];

disp(' RBF Training Results')
disp(' Pos Neg')
disp(postr)
disp(negtr)

posver = [TPver FPver];
negver = [FNver TNver];

disp(' RBF Test Results')
disp(' Pos Neg')
disp(posver)
disp(negver)

87

Appendix H: VBA Reliability Model (AARES) Code

Custom GUI
Private Sub Cancel_Click()
 Unload Me
 End
End Sub
Private Sub Run_Click()
Dim tr As Integer, yr As Integer, stepsizeLR As Double, nuFF As Double, nuRB As Double, _
MFF As Integer, agg As Integer, tag As Integer
' Capture the value of the years to train listbox
With TrYr
 If .ListIndex <> -1 Then
 tr = TrYr.Value
 Else
 MsgBox "Select the number of years to train the network."
 Exit Sub
 End If
End With

'Capture value of out-year prediction listbox
With OutYear
 If .ListIndex <> -1 Then
 yr = OutYear.Value
 Else
 MsgBox "Select the number of out-years to predict."
 .SetFocus
 Exit Sub
 End If
End With

'Capture value of number of runs over which to average FFN and RBFN
With Average
 If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Then
 MsgBox "Enter a number of runs over which to average results."
 .SetFocus
 Exit Sub
 Else
 agg = Average.Value
 End If
End With

'Check to ensure at least one network selected
If LR.Value = False And FFN.Value = False And RBFN.Value = False Then
 MsgBox "You must select at least one network."
 Exit Sub
End If

'Capture which networks to run and associated parameters
With LR
 If .Value = True Then
 With TextBox1
 If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Or .Value > 1 Then
 MsgBox "Enter a LR stepsize between 0.0 and 1.0."

88

 .SetFocus
 Exit Sub
 Else
 stepsizeLR = TextBox1
 End If
 End With
 End If
End With

With FFN
 If .Value = True Then
 With TextBox2
 If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Or .Value > 1 Then
 MsgBox "Enter a FFN stepsize between 0.0 and 1.0."
 .SetFocus
 Exit Sub
 End If
 End With
 With TextBox4
 If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Then
 MsgBox "Enter the number of middle layer neurodes."
 .SetFocus
 Exit Sub
 Else
 nuFF = TextBox2
 MFF = TextBox4
 End If
 End With
 End If
End With

With RBFN
 If .Value = True Then
 With TextBox3
 If .Value = "" Or Not IsNumeric(.Value) Or .Value <= 0 Or .Value > 1 Then
 MsgBox "Enter a RBFN spread between 0.0 and 1.0."
 .SetFocus
 Exit Sub
 Else
 nuRB = TextBox3
 End If
 End With
 End If
End With

tag = 0

Unload Me

' kick back over to the main program, transfer the arguments
Call Sheet2.Main(tr, yr, stepsizeLR, nuFF, nuRB, MFF, agg, tag)
End Sub

Private Sub TrYr_DropButtonClick()

89

End Sub

Private Sub UserForm_Initialize()

'Populate the TrYr listbox
If TrYr.ListIndex = -1 Then
 For i = 10 To 13
 TrYr.AddItem (i)
 Next i
End If

'Populate the out-year prediction listbox
If OutYear.ListIndex = -1 Then
 For i = 0 To 2
 OutYear.AddItem (i)
 Next i
End If
End Sub

Quick Estimate GUI
Private Sub Cancel_Click()

Unload Me
End

End Sub
Private Sub Run_Click()
Dim tr As Integer, yr As Integer, stepsizeLR As Double, nuFF As Double, nuRB As Double, _
MFF As Integer, agg As Integer, tag As Integer

tag = 1

With OutYear
 If .ListIndex <> -1 Then
 yr = OutYear.Value
 Else
 MsgBox "Select the number of out-years to predict."
 .SetFocus
 Exit Sub
 End If
End With

tr = 11
stepsizeLR = 0.001
nuFF = 0.7
nuRB = 1
MFF = 5
agg = 5

Unload Me

Call Sheet2.Main(tr, yr, stepsizeLR, nuFF, nuRB, MFF, agg, tag)

90

End Sub

Private Sub UserForm_Initialize()
'Populate the out-year prediction listbox
If OutYear.ListIndex = -1 Then
 For i = 0 To 2
 OutYear.AddItem (i)
 Next i
End If
End Sub

AARES Logic
Option Explicit
Option Base 1

Dim i As Integer, j As Integer, k As Integer, l As Integer, ii As Integer, _
iter As Integer, n As Integer, m As Integer, q As Integer, _
prevtoterr As Double, toterr As Double, count As Integer, X() As Double, _
t() As Double, ncols As Integer, nrows As Integer, agg As Integer, _
nn As Integer, mm As Integer, qq As Integer, jj As Integer, sumcount As Double, _
zlr() As Double, zzlr() As Double, zff() As Double, zzff() As Double, _
zvff() As Double, zzvff() As Double, zrb() As Double, zzrb() As Double, _
zvrb() As Double, zzvrb() As Double, cc As Integer, rr As Integer, marker As Integer, _
ZGem() As Double, corrZ() As Double, kk As Integer

Sub Main(tr, yr, stepsizeLR, nuFF, nuRB, MFF, agg, tag)

Call Capture

' if doing the quick estimate, get maximum training points
If tag = 1 Then
 tr = UBound(X, 2) - yr
End If

' check to ensure not training beyond prediction capability
If tr + yr > UBound(X, 2) Then
 MsgBox "Sum of Training Years and Out-Year Prediction must be <= " & UBound(X, 2)
 UserInputs.Show
End If

' get parameters to place model results
With Range("A2")
 cc = Range(.Offset(0, 0), .End(xlToRight)).Columns.count + 4
End With
With Range("E2")
 rr = Range(.Offset(1, 0), .End(xlDown)).Rows.count
End With

' copy over FY column -- will use for x-axis on charts
With Range("A2")
 For j = 0 To rr
 .Offset(j, 0).Copy
 .Offset(j, cc).PasteSpecial (xlPasteFormats)
 .Offset(j, cc).PasteSpecial (xlPasteValues)

91

 .Offset(j, 4).Copy
 .Offset(j, cc + 1).PasteSpecial (xlPasteFormats)
 .Offset(j, cc + 1).PasteSpecial (xlPasteValues)
 Next j
 .Offset(-1, cc).Value = "Reliablity Estimates"
 .Offset(-1, cc).Characters.Font.Size = 10
 .Offset(-1, cc).Characters.Font.Bold = True
 For j = tr + 1 + yr To UBound(X, 2) + yr
 .Offset(j, cc).Value = .Offset(j - 1, cc).Value + 1
 .Offset(j, cc).Borders(xlEdgeRight).LineStyle = xlContinuous
 .Offset(j, cc).HorizontalAlignment = xlCenter
 Next j
End With

marker = 0

If stepsizeLR <> 0 Then
 Call LogReg(tr, yr, stepsizeLR)
End If

If nuFF <> 0 Then
 Call FFNN(tr, yr, nuFF, MFF, agg)
End If

If nuRB <> 0 Then
 Call RBFNN(tr, yr, nuRB, agg)
End If

If marker > 1 Then
 Call Fusion(tr, yr)
End If

Call errors(tr, yr)

If tag = 1 Then
 Call QuickChart(yr)
Else
 Call Chart
End If

End Sub

Sub LogReg(tr, yr, stepsizeLR)
' logistic regression (instantaneous)

' strip off bottom row of flight test results from input matrix and set as target vector
ReDim t(1, UBound(X, 2))
For i = 1 To UBound(X, 2)
 t(1, i) = X(UBound(X, 1), i)
Next i

'sets nfeat = to the number of columns
Dim nfeat As Integer
nfeat = UBound(X, 1) - 1

92

' output training vector
ReDim zlr(tr + yr) As Double
' output prediction vector
ReDim zvlr(UBound(X, 2) + yr) As Double
' weight vector
ReDim w(nfeat) As Double
' weight gradient vector
ReDim dw(nfeat) As Double

'variable to index where to display data
marker = marker + 1

' zero out weights
For ii = 1 To nfeat
 w(ii) = 0
Next ii

'sets number of iterations for code to run through
iter = 1000
' used as a comparator to know when to stop increasing iterations
prevtoterr = 1
' parameter that tells the code when to stop (when decreases in toterr become very small)
toterr = 0

' loops through with increasing number of iterations until graph stabilizes
' and converges -- when toterr changes very little
Do While Abs(prevtoterr - toterr) > 0.001
 prevtoterr = toterr
 For i = 1 To iter
 toterr = 0 ' zeros out total error
 For ii = 1 To nfeat
 dw(ii) = 0 ' zeros out dw, differential of the error
 Next ii
 For j = 1 + yr To tr + yr 'j runs from 1 down the number of rows
 zlr(j) = 0 ' initializes zlr(j) at zero (estimated value)
 For k = 1 To nfeat ' runs from 1 across the number of columns
 zlr(j) = zlr(j) + w(k) * X(k, j - yr) ' sets Yhat = previous_Yhat + weight*current x_value, x_value
changes across the columns
 Next k ' does this across the columns
 zlr(j) = (1 / (1 + Exp(-1 * zlr(j)))) ' call the sigmoid file and do it's thing with the z_matrix element
 For l = 1 To nfeat 'l runs across the columns
 dw(l) = (zlr(j) - X(nfeat + 1, j)) * zlr(j) * (1 - zlr(j)) * X(l, j - yr) ' cumes all the differentials of the
errors
 w(l) = w(l) - stepsizeLR * dw(l) ' steps in the direction opposite the error, converges toward the
"true" weights/b_knot and b_one
 Next l
 toterr = toterr + ((zlr(j) - X(nfeat + 1, j)) ^ 2) ' cumes total error per iteration
 Next j
 Next i
 ' sets number of iterations to run through next depending upon changes
 ' in toterr
 If Abs(prevtoterr - toterr) > 0.01 Then
 iter = iter + 1000
 Else

93

 iter = iter + 500
 End If
Loop

' logreg prediction code
If tr < UBound(X, 2) Then
 For n = tr + 1 + yr To UBound(X, 2) + yr
 zvlr(n) = 0
 For k = 1 To nfeat
 zvlr(n) = zvlr(n) + w(k) * X(k, n - yr)
 Next k ' end k loop
 zvlr(n) = 1 / (1 + Exp(-(zvlr(n))))
 Next n ' end n loop
End If ' end year check

With Range("k2")
 .Offset(0, marker) = "Log Reg"
 .Offset(0, 0).Copy
 .Offset(0, marker).PasteSpecial (xlPasteFormats)
 For ii = 1 + yr To tr + yr
 .Offset(ii, marker) = zlr(ii)
 .Offset(ii, marker).HorizontalAlignment = xlCenter
 .Offset(ii, marker).NumberFormat = "##.00%"
 .Offset(ii, marker).Characters.Font.Size = 8
 Next ii
 For ii = 1 + tr + yr To UBound(X, 2) + yr
 .Offset(ii, marker) = zvlr(ii)
 .Offset(ii, marker).HorizontalAlignment = xlCenter
 .Offset(ii, marker).NumberFormat = "##.00%"
 .Offset(ii, marker).Characters.Font.Size = 8
 Next ii
 If marker = 1 Then
 .Offset(1 + yr, -2) = "Training"
 If tr < UBound(X, 2) Then
 .Offset(1 + tr + yr, -2) = "Prediction"
 End If
 End If
End With

End Sub

Sub FFNN(tr, yr, nuFF, MFF, agg)
Randomize

' strip off bottom row of flight test results from input matrix and set as target vector
ReDim t(1, UBound(X, 2))
For i = 1 To UBound(X, 2)
 t(1, i) = X(UBound(X, 1), i)
Next i

'variable to index where to display data
marker = marker + 1
' number of runs to and then average together
'agg = 2

94

' number of inputs (features)
n = UBound(X, 1) - 1
' number of midddle layer neurodes
m = MFF
' number of output layer neurodes
j = UBound(t, 1)
' average of output runs
ReDim zzff(j, tr + yr) As Double
' average of prediction runs
ReDim zzvff(j, UBound(X, 2) + yr) As Double
' lower layer output matrix
ReDim zff(j, tr + yr, agg) As Double
' verification output matrix
ReDim zvff(j, UBound(X, 2) + yr, agg) As Double

' loop through a few times to get an average of the output values
For count = 1 To agg
' upper layer output row vector
ReDim Y(m) As Double
' middle layer weights matrix
ReDim w(n, m) As Double
' upper layer weights matrix
ReDim u(m, j) As Double
' middle layer summations weight gradients
ReDim dw(n, m) As Double

' set number of iterations
iter = 1500
' setting initial weights
For mm = 1 To m
 For nn = 1 To n
 w(nn, mm) = (0.4 * Rnd) - 0.2
 Next nn
 For jj = 1 To j
 u(mm, jj) = (0.4 * Rnd) - 0.2
 Next jj
Next mm ' end m loop, setting initial weights

prevtoterr = 1
toterr = 0
Do While Abs(prevtoterr - toterr) > 0.001
 prevtoterr = toterr
 ' initialize iterations
 For i = 1 To iter
 toterr = 0
 ' run down the rows of exemplars
 For qq = 1 + yr To tr + yr
 ' zero out outputs
 For jj = 1 To j
 zff(jj, qq, count) = 0
 Next jj ' end j loop, zero out outputs
 For nn = 1 To n
 For mm = 1 To m
 dw(nn, mm) = 0

95

 Next mm ' end m loop
 Next nn ' end n loop, zero out summation portion of middle layer weight gradients
 For mm = 1 To m
 'calculate middle layer outputs
 Y(mm) = 0
 For nn = 1 To n
 Y(mm) = Y(mm) + w(nn, mm) * X(nn, qq - yr)
 Next nn ' end n loop, sum across middle layer prior to squashing
 ' calculate sigmoid of middle layer outputs -- squash 'em
 Y(mm) = 1 / (1 + Exp(-(Y(mm))))
 Next mm ' end m loop, middle layer outputs
 ' calculate outputs
 For jj = 1 To j
 For mm = 1 To m
 zff(jj, qq, count) = zff(jj, qq, count) + u(mm, jj) * Y(mm)
 Next mm ' end m loop, sum across the outputs prior to squashing
 ' calculate sigmoid of outputs -- squash 'em
 zff(jj, qq, count) = 1 / (1 + Exp(-(zff(jj, qq, count))))
 Next jj ' end j loop, new output loop
 ' adjust weights
 For mm = 1 To m
 ' calculate new upper layer weights
 For jj = 1 To j
 u(mm, jj) = u(mm, jj) + nuFF * ((t(jj, qq) - zff(jj, qq, count)) * zff(jj, qq, count) * (1 - zff(jj, qq,
count)) * Y(mm))
 Next jj ' end j loop, uppper layer weight update
 ' calculate summation portion of gradient for middle layer
 For nn = 1 To n
 For jj = 1 To j
 dw(nn, mm) = dw(nn, mm) + (t(jj, qq) - zff(jj, qq, count)) * (zff(jj, qq, count) * (1 - zff(jj,
qq, count))) * u(mm, jj)
 Next jj ' end j loop cume portion of middle layer weight gradient
 ' calculate middle layer weights
 w(nn, mm) = w(nn, mm) + nuFF * dw(nn, mm) * (Y(mm) * (1 - Y(mm)) * X(nn, qq - yr))
 Next nn ' end n loop middle layer weight adjustments
 Next mm ' end m loop, weight adjustments
 ' calculate SSE
 For jj = 1 To j
 toterr = toterr + (zff(jj, qq, count) - t(jj, qq)) ^ 2
 Next jj ' end toterr cume loop
 Next qq ' end q loop number of exemplars on which to train
 Next i 'end iteration loop
 If Abs(prevtoterr - toterr) > 0.005 Then
 iter = iter + 100
 Else
 iter = iter + 50
 End If ' end iteration step-check loop
Loop ' end .001 while loop

' verify weights developed during training -- attempt to predict current year or out-year flight
' test results within data set
If tr < UBound(X, 2) Then
 For qq = tr + 1 + yr To UBound(X, 2) + yr
 For jj = 1 To j

96

 zvff(jj, qq, count) = 0
 Next jj
 For mm = 1 To m
 Y(mm) = 0
 For nn = 1 To n
 Y(mm) = Y(mm) + w(nn, mm) * X(nn, qq - yr)
 Next nn
 Y(mm) = 1 / (1 + Exp(-(Y(mm))))
 For jj = 1 To j
 zvff(jj, qq, count) = zvff(jj, qq, count) + u(mm, jj) * Y(mm)
 Next jj
 Next mm
 For jj = 1 To j
 zvff(jj, qq, count) = 1 / (1 + Exp(-(zvff(jj, qq, count))))
 Next jj
 Next qq ' end verification loop
End If ' end prediction test
Next count ' end count loop

' calculate average of the training runs and display
For jj = 1 To j
 For qq = 1 + yr To tr + yr
 sumcount = 0
 For count = 1 To agg
 sumcount = sumcount + zff(jj, qq, count)
 Next count
 zzff(jj, qq) = sumcount / UBound(zff, 3)
 Next qq
Next jj
'MsgBox "Training " & tr & " Out-year " & yr & " stepsize " & nuFF
' calculate average of prediction runs
If tr < UBound(X, 2) Then
 For jj = 1 To j
 For qq = tr + 1 + yr To UBound(X, 2) + yr
 sumcount = 0
 For count = 1 To agg
 sumcount = sumcount + zvff(jj, qq, count)
 Next count
 zzvff(jj, qq) = sumcount / UBound(zvff, 3)
 Next qq
 Next jj
End If

'present calculated estimates in worksheet
With Range("k2")
 .Offset(0, marker) = "FFN"
 .Offset(0, 0).Copy
 .Offset(0, marker).PasteSpecial (xlPasteFormats)
 For jj = 1 To UBound(t, 1)
 For ii = 1 + yr To tr + yr
 .Offset(ii, marker) = zzff(jj, ii)
 .Offset(ii, marker).HorizontalAlignment = xlCenter
 .Offset(ii, marker).NumberFormat = "##.00%"
 .Offset(ii, marker).Characters.Font.Size = 8

97

 Next ii
 For ii = 1 + tr + yr To UBound(X, 2) + yr
 .Offset(ii, marker) = zzvff(jj, ii)
 .Offset(ii, marker).HorizontalAlignment = xlCenter
 .Offset(ii, marker).NumberFormat = "##.00%"
 .Offset(ii, marker).Characters.Font.Size = 8
 Next ii
 Next jj
 If marker = 1 Then
 .Offset(1 + yr, -2) = "Training"
 If tr < UBound(X, 2) Then
 .Offset(1 + tr + yr, -2) = "Prediction"
 End If
 End If
End With

End Sub

Sub RBFNN(tr, yr, nuRB, agg)
' RBFN code
Randomize

' strip off bottom row of flight test results from input matrix and set as target vector
ReDim t(1, UBound(X, 2))
For i = 1 To UBound(X, 2)
 t(1, i) = X(UBound(X, 1), i)
Next i

'variable to index where to display data
marker = marker + 1
' number of runs to and then average together
'agg = 2
' number of inputs (features)
n = UBound(X, 1) - 1
' number of midddle layer neurodes
m = tr
' number of output layer neurodes
j = UBound(t, 1)

' set output vectors
ReDim zrb(j, tr + yr, agg) As Double
ReDim zvrb(j, UBound(X, 2) + yr, agg) As Double
ReDim zzrb(j, tr + yr) As Double
ReDim zzvrb(j, UBound(X, 2) + yr) As Double

' summation variables for use in code
Dim adduys As Double
Dim distnc As Double

' loop through a few times and get an averaqe
For count = 1 To agg
' upper layer output row vector
ReDim Y(m, tr + yr) As Double
' middle layer neurode centers

98

ReDim v(n, m) As Double
' upper layer weights matrix
ReDim u(m, j) As Double
' upper layer weights gradients
ReDim du(m, j) As Double
' middle layer summations weight gradients
ReDim dw(j, tr + yr) As Double
' summation matrix for distance calculation
ReDim addup(m, UBound(X, 2) + yr) As Double

' set number of iterations
iter = 100
'compute single spread parameter
Dim sigma As Double
sigma = 1 / ((2 * m) ^ (1 / n))
' setting initial weights, neurode centers
For mm = 1 To m
 For jj = 1 To j
 u(mm, jj) = (0.5 * Rnd) - 0.5
 Next jj ' end J loop
 For nn = 1 To n
 v(nn, mm) = X(nn, mm)
 Next nn ' end n loop
Next mm ' end m loop, setting initial weights

' used as a comparator to know when to stop increasing iterations
prevtoterr = 1
' parameter that tells the code when to stop (when decreases in toterr become very small)
toterr = 0
' calculate difference vector
For qq = 1 + yr To tr + yr
 For mm = 1 To m
 distnc = 0
 For nn = 1 To n
 distnc = distnc + (X(nn, qq - yr) - v(nn, mm)) ^ 2
 Next nn
 addup(mm, qq) = distnc
 Next mm
Next qq

' compute y(m,q)
For qq = 1 + yr To tr + yr
 For mm = 1 To m
 If qq = mm Then
 Y(mm, qq) = 1
 Else
 Y(mm, qq) = Exp(-(addup(mm, qq)) / (2 * (sigma ^ 2)))
 End If ' end if test
 Next mm ' end m loop
Next qq ' end q loop

' train the network
Do While Abs(prevtoterr - toterr) > 0.00001
 prevtoterr = toterr

99

 ' initialize iterations
 For i = 1 To iter
 toterr = 0
 For mm = 1 To m
 For jj = 1 To j
 du(mm, jj) = 0
 For qq = 1 + yr To tr + yr
 dw(jj, qq) = 0
 Next qq ' end q loop
 Next jj ' end j loop
 Next mm ' end m loop
 ' compute new outputs
 For qq = 1 + yr To tr + yr
 For jj = 1 To j
 For mm = 1 To m
 dw(jj, qq) = dw(jj, qq) + (u(mm, jj) * Y(mm, qq))
 Next mm ' end m loop
 Next jj ' end j loop
 Next qq ' end new output loops
 For qq = 1 + yr To tr + yr
 For jj = 1 To j
 zrb(jj, qq, count) = dw(jj, qq) / m
 Next jj ' end j loop
 Next qq ' end q loop
 ' SSE calculation
 For qq = 1 + yr To tr + yr
 For jj = 1 To j
 toterr = toterr + ((t(jj, qq) - zrb(jj, qq, count)) ^ 2)
 Next jj ' end j loop
 Next qq ' end error calculation
 If toterr < prevtoterr Then
 nuRB = nuRB * 1.04
 Else
 nuRB = nuRB * 0.92
 End If ' end new stepsize check
 ' adjust weights
 For mm = 1 To m
 For jj = 1 To j
 For qq = 1 + yr To tr + yr
 du(mm, jj) = du(mm, jj) + ((t(jj, qq) - zrb(jj, qq, count)) * Y(mm, qq))
 Next qq ' end q loop
 Next jj ' end j loop
 Next mm ' end m loop
 For mm = 1 To m
 For jj = 1 To j
 u(mm, jj) = u(mm, jj) + ((2 * nuRB) / m) * du(mm, jj)
 Next jj ' end j loop
 Next mm ' end m loop
 Next i ' end iteration loop
Loop ' end tolerance loop

' test middle layer outputs
ReDim ytest(m, UBound(X, 2) + yr) As Double

100

' verify test data
If tr < UBound(X, 2) Then
 For qq = tr + 1 + yr To UBound(X, 2) + yr
 ' zero out output matrix
 For jj = 1 To j
 zvrb(jj, qq, count) = 0
 Next jj ' end j loop
 ' calculate distances from center
 For mm = 1 To m
 distnc = 0
 For nn = 1 To n
 distnc = distnc + (X(nn, qq - yr) - v(nn, mm)) ^ 2
 Next nn ' end n loop
 addup(mm, qq) = distnc
 Next mm ' end m loop
 Next qq ' end q loop
 ' compute ytest(m,q)
 For qq = tr + 1 + yr To UBound(X, 2) + yr
 For mm = 1 To m
 ytest(mm, qq) = Exp(-(addup(mm, qq)) / (2 * (sigma ^ 2)))
 Next mm ' end m loop
 Next qq ' end q loop
 ' compute outputs
 For qq = tr + 1 + yr To UBound(X, 2) + yr
 For jj = 1 To j
 adduys = 0
 For mm = 1 To m
 adduys = adduys + u(mm, jj) * ytest(mm, qq)
 Next mm ' end m loop
 zvrb(jj, qq, count) = adduys / m
 Next jj ' end j loop
 Next qq ' end q loop
End If ' end prediction test
Next count ' end count loop

' calculate average of the training runs and display
For jj = 1 To j
 For qq = 1 + yr To tr + yr
 sumcount = 0
 For count = 1 To agg
 sumcount = sumcount + zrb(jj, qq, count)
 Next count
 zzrb(jj, qq) = sumcount / UBound(zrb, 3)
 Next qq
Next jj
'MsgBox "Training " & tr & " Out-year " & yr & " stepsize " & nuFF
' calculate average of prediction runs
If tr < UBound(X, 2) Then
 For jj = 1 To j
 For qq = tr + 1 + yr To UBound(X, 2) + yr
 sumcount = 0
 For count = 1 To agg
 sumcount = sumcount + zvrb(jj, qq, count)
 Next count

101

 zzvrb(jj, qq) = sumcount / UBound(zvrb, 3)
 Next qq
 Next jj
End If

'present calculated estimates in workwheet
With Range("k2")
 .Offset(0, marker) = "RBFN"
 .Offset(0, 0).Copy
 .Offset(0, marker).PasteSpecial (xlPasteFormats)
 For jj = 1 To UBound(t, 1)
 For ii = 1 + yr To tr + yr
 .Offset(ii, marker) = zzrb(jj, ii)
 .Offset(ii, marker).HorizontalAlignment = xlCenter
 .Offset(ii, marker).NumberFormat = "##.00%"
 .Offset(ii, marker).Characters.Font.Size = 8
 Next ii
 For ii = tr + 1 + yr To UBound(X, 2) + yr
 .Offset(ii, marker) = zzvrb(jj, ii)
 .Offset(ii, marker).HorizontalAlignment = xlCenter
 .Offset(ii, marker).NumberFormat = "##.00%"
 .Offset(ii, marker).Characters.Font.Size = 8
 Next ii
 Next jj
 If marker = 1 Then
 .Offset(1 + yr, -2) = "Training"
 If tr < UBound(X, 2) Then
 .Offset(1 + tr + yr, -2) = "Prediction"
 End If
 End If
End With
End Sub

Sub Fusion(tr, yr)
' fuse the outputs from the selected nets
Dim denomalpha As Double
denomalpha = 0
'ReDim ZZGem(UBound(x, 2) + yr - tr) As Double
Dim numalpha As Double
Dim CM As Range
Dim PL As Range

'generate correlation matrix and display on worksheet
With Range("J2")
 j = Range(.Offset(0, 1), .End(xlToRight)).Columns.count
 ii = Range(.Offset(0, 0), .End(xlDown)).Rows.count
 Range(.Offset(yr + 1, 2), .Offset(tr + yr, j)).Select
 Range(.Offset(yr + 1, 2), .Offset(tr + yr, j)).Name = "CM"
 Range(.Offset(ii + 3, 1), .Offset(ii + 3, 1)).Name = "PL"
 Application.Run "ATPVBAEN.XLA!Mcorrel", ActiveSheet.Range("CM"), _
 ActiveSheet.Range("PL"), "C", False
 .Offset(ii + 2, 1) = "Correlation Matrix"
 .Offset(ii + 2, 1).Characters.Font.Size = 8
 .Offset(ii + 2, 1).Characters.Font.Bold = True

102

ReDim corrZ(j - 1, j - 1) As Double

'put worksheet correlation matrix into an array
For jj = 1 To j - 1
 For kk = 1 To j - 1
 corrZ(kk, jj) = Range(.Offset(kk + ii + 3, jj + 1), .Offset(kk + ii + 3, jj + 1)).Value
 Next kk
Next jj

'MsgBox "corrZ " & corrZ(1, 1) & " " & corrZ(1, 2) & " " & corrZ(2, 1) & " " & corrZ(2, 2)

ReDim alpha(j - 1) As Double

' make matrix symmetrical for ease of use, sum up inverse of elements for denominator
For jj = 1 To j - 1
 For kk = 1 To j - 1
 If corrZ(kk, jj) = 0 Then
 corrZ(kk, jj) = corrZ(jj, kk)
 End If
 'MsgBox "corrZ " & corrZ(kk, jj)
 Next kk
Next jj

For jj = 1 To j - 1
 For kk = 1 To j - 1
 'MsgBox "corrZ " & corrZ(kk, jj)
 denomalpha = denomalpha + (1 / corrZ(kk, jj))
 Next kk
Next jj

' calculate numerator and weights, display on worksheet
.Offset(ii + 6 + UBound(corrZ, 1), 1) = "Fusion Weights"
.Offset(ii + 6 + UBound(corrZ, 1), 1).Characters.Font.Size = 8
.Offset(ii + 6 + UBound(corrZ, 1), 1).Characters.Font.Bold = True
For jj = 1 To UBound(corrZ, 1)
 numalpha = 0
 For kk = 1 To UBound(corrZ, 2)
 numalpha = numalpha + (1 / corrZ(jj, kk))
 Next kk
 alpha(jj) = numalpha / denomalpha
 .Offset(ii + 7 + UBound(corrZ, 1), 1 + jj) = alpha(jj)
Next jj

'Calculate fused outputs and display on worksheet
.Offset(0, j + 1) = "Fused"
.Offset(0, j + 1).HorizontalAlignment = xlCenter
.Offset(0, j + 1).Characters.Font.Size = 8
.Offset(0, j + 1).Characters.Font.Bold = True
.Offset(0, j + 1).Borders(xlEdgeBottom).LineStyle = xlContinuous
.Offset(0, j + 1).Borders(xlEdgeLeft).LineStyle = xlContinuous

ReDim ZGem(ii - 1) As Double
For kk = 1 + yr To ii - 1
 ZGem(kk) = 0

103

 For jj = 1 To UBound(corrZ, 1)
 ZGem(kk) = ZGem(kk) + alpha(jj) * .Offset(kk, jj + 1).Value
 Next jj
 .Offset(kk, j + 1) = ZGem(kk)
 .Offset(kk, j + 1).HorizontalAlignment = xlCenter
 .Offset(kk, j + 1).NumberFormat = "##.00%"
 .Offset(kk, j + 1).Characters.Font.Size = 8
Next kk

End With

End Sub

Sub errors(tr, yr)

' calculate the errors of the selected methods
' first capture the outputs and put into a matrix
Dim ncols As Integer, nrows As Integer, Z() As Double

If marker = 1 Then
 qq = 3
 Else
 qq = 14
End If

With Range("J2")
 ncols = Range(.Offset(0, 2), .End(xlToRight)).Columns.count
 nrows = Range(.Offset(1, 0), .End(xlDown)).Rows.count
 ReDim Z(nrows, ncols) As Double
 For nn = 1 To nrows
 For mm = 1 To ncols
 Z(nn, mm) = .Offset(nn, 1 + mm).Value
 Next mm
 Next nn

 ReDim sse(ncols) As Double, mse(ncols) As Double, rmse(ncols) As Double
 For mm = 1 To ncols
 For nn = 1 + yr To UBound(X, 2)
 sse(mm) = sse(mm) + (t(1, nn) - Z(nn, mm)) ^ 2
 Next nn
 mse(mm) = sse(mm) / (UBound(X, 2) - yr)
 rmse(mm) = mse(mm) ^ (1 / 2)
 Next mm

 .Offset(nrows + qq, 1) = "SSE"
 .Offset(nrows + qq, 1).Characters.Font.Size = 8
 .Offset(nrows + qq, 1).Characters.Font.Bold = True
 .Offset(nrows + qq + 2, 1) = "MSE"
 .Offset(nrows + qq + 2, 1).Characters.Font.Size = 8
 .Offset(nrows + qq + 2, 1).Characters.Font.Bold = True
 .Offset(nrows + qq + 4, 1) = "RMSE"
 .Offset(nrows + qq + 4, 1).Characters.Font.Size = 8
 .Offset(nrows + qq + 4, 1).Characters.Font.Bold = True

104

 For mm = 1 To ncols
 .Offset(nrows + qq, 1 + mm) = sse(mm)
 .Offset(nrows + qq + 2, 1 + mm) = mse(mm)
 .Offset(nrows + qq + 4, 1 + mm) = rmse(mm)
 Next mm

End With

End Sub

Private Sub GoBabyGo_Click()

' clear old model results
With Range("I1")
 Range(.Offset(0, 0), .Offset(100, 50)).Clear
End With

Worksheets("Model").ChartObjects.Delete

SnappyIntro.Show

End Sub
Sub Capture()

' collect the number of years worth of flight test data
With Range("E2")
 ncols = Range(.Offset(1, 0), .End(xlDown)).Rows.count
End With

'collect the number of features
With Range("B2")
 nrows = Range(.Offset(0, 0), .End(xlToRight)).Columns.count
 ' add a row of ones across the top and take the transpose of the input matrix
 ReDim X(nrows + 1, ncols) As Double
 For j = 1 To ncols
 X(1, j) = 1
 For i = 1 To nrows
 X(i + 1, j) = .Offset(j, i - 1).Value
 Next i
 Next j
End With

End Sub

Sub Chart()
Dim ncols As Integer, nrows As Integer

With Range("J2")

 ncols = Range(.Offset(0, 0), .End(xlToRight)).Columns.count - 1
 nrows = Range(.Offset(0, 0), .End(xlDown)).Rows.count - 1
 Charts.Add
 ActiveChart.ChartType = xlXYScatterLines

105

 ActiveChart.SetSourceData Source:=Sheets("Model").Range(.Offset(0, 0), .Offset(nrows, ncols)),
PlotBy:= _
 xlColumns
 ActiveChart.Location Where:=xlLocationAsObject, Name:="Model"
 With ActiveChart
 .HasTitle = True
 .ChartTitle.Characters.Text = "Reliability Estimates"
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "FY"
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Reliability"
 End With
 ActiveChart.ApplyDataLabels Type:=xlDataLabelsShowNone, LegendKey:=False
 ActiveChart.Axes(xlCategory).Select
 With ActiveChart.Axes(xlCategory)
 .MinimumScale = 1990
 .MaximumScaleIsAuto = True
 .MinorUnitIsAuto = True
 .MajorUnitIsAuto = True
 .Crosses = xlCustom
 .CrossesAt = 1990
 .ReversePlotOrder = False
 .ScaleType = xlLinear
 .DisplayUnit = xlNone
 End With

End With

With ChartObjects(1)
 .Left = 0
 .Top = 214
End With
End Sub

Sub QuickChart(yr)
Dim nrows As Integer, ncols As Integer

With Range("J2")
 ncols = Range(.Offset(0, 0), .End(xlToRight)).Columns.count - 1
 nrows = Range(.Offset(0, 0), .End(xlDown)).Rows.count - 1
 Charts.Add
 ActiveChart.ChartType = xlXYScatterLines
 ActiveChart.SetSourceData Source:=Sheets("Model").Range(.Offset(0, 0), .Offset(nrows, ncols)), _
 PlotBy:=xlColumns
 ActiveChart.SeriesCollection(4).Delete
 ActiveChart.SeriesCollection(3).Delete
 ActiveChart.SeriesCollection(2).Delete
 ActiveChart.Location Where:=xlLocationAsNewSheet
 With ActiveChart
 .HasTitle = True
 .ChartTitle.Characters.Text = "Reliability Estimates"
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "FY"
 .Axes(xlValue, xlPrimary).HasTitle = True

106

 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Reliability"
 End With
 ActiveChart.ApplyDataLabels Type:=xlDataLabelsShowValue, LegendKey:=False
 ActiveChart.SeriesCollection(2).DataLabels.Select
 Selection.AutoScaleFont = True
 With Selection.Font
 .Name = "Arial"
 .FontStyle = "Regular"
 .Size = 8
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone
 .ColorIndex = xlAutomatic
 .Background = xlAutomatic
 End With
 ActiveChart.SeriesCollection(1).Select
 ActiveChart.SeriesCollection(1).ApplyDataLabels Type:=xlDataLabelsShowNone, _
 AutoText:=True, LegendKey:=False

 If yr = 0 Then
 ActiveChart.Shapes.AddTextbox(msoTextOrientationHorizontal, 475, 5, _
 200, 45).Select
 Selection.Characters.Text = "Your current year reliabiity estimate is " & Round(.Offset(nrows,
ncols).Value * 100, 2) & _
 "%, +/- " & Round(.Offset(nrows + 18, ncols) * 100, 2) & "% (RMSE)."
 Selection.AutoScaleFont = False
 With Selection.Characters(Start:=1, Length:=70).Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 12
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone
 .ColorIndex = xlAutomatic
 End With
 Else
 ActiveChart.Shapes.AddTextbox(msoTextOrientationHorizontal, 475, 5, _
 200, 45).Select
 Selection.Characters.Text = "Your " & yr & " year reliability prediction is " & Round(.Offset(nrows,
ncols).Value * 100, 2) & _
 "%, +/- " & Round(.Offset(nrows + 18, ncols) * 100, 2) & "% (RMSE)."
 Selection.AutoScaleFont = False
 With Selection.Characters(Start:=1, Length:=70).Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 12
 .Strikethrough = False
 .Superscript = False

107

 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone
 .ColorIndex = xlAutomatic
 End With
 End If
End With

End Sub

108

Bibliography

Bauer, Kenneth W. Class handout, OPER 785, Applied Multivariate Data Analysis 2,

School of Engineering and Management, Air Force Institute of Technology, Wright-
Patterson AFB OH, November 2002.

Bredehoeft, Michael R.; OC-ALC/PSMRT, Personal Interview, 12 August 2002, 25

October 2002

Department of the Air Force, TO 21-AG129-2-1, “AGM-129 Advanced Cruise Missile

Operations Manual.”

Karunanithi, Nachimuthu; Darrell Whitley, and Yashwant K. Malaiya, “Using Neural

Networks in Reliability Prediction”, IEEE Software, 9, #4: 53-59, (Jul/Aug 1992).

Lindblad, David, Mark Bringhurst, Rakesh Dewan, and Noriene Jee. “Weapon System

Effectiveness for a Legacy System,” Second Biennial Forum on Weapon
System Effectiveness, 27-29 March 2001, Johns Hopkins, Applied Physics
Laboratory, Laurel MD

Looney, Carl G. Pattern Recognition Using Neural Networks, Theory and Algorithms for

Engineers and Scientists, Oxford University Press, 1977

Morris, Seymour and others. Reliability Toolkit: Commercial Practices Edition

Perrone, Michael P. and Leon N. Cooper, “When Networks Disagree: Ensemble Methods

for Hybrid Neural Networks,” October 27, 1992

Quick, David M., Major, ACC/DRYS, Personal Interview, 6-15 January 2003

SIOP Planning Factors Conference, Offutt AFB NE, 15-16 October 2002

Strategic Systems Department, Johns Hopkins, Applied Physics Laboratory; Appendix B,

Methodology and Supporting Analysis, Trident II and Trident III Reliability Plan,
2002

109

Vita

Captain Donald Hoffman enlisted in the Air Force in November 1986. After

completing basic training and attending technical school, he was stationed at Scott AFB,

IL and assigned to the 375 Consolidated Aircraft Maintenance Squadron. He worked on

the flightline as a crew chief and flight mechanic on C-9As until his honorable discharge

in 1991 at the rank of staff sergeant. After completing his baccalaureate degree programs

at St Louis University and working in industry for a year, Captain Hoffman was accepted

to officer training school and commissioned a second lieutenant in March 1995. His first

assignment was Barksdale AFB, LA working as a maintenance officer assigned to the 2nd

Munitions Squadron and later the 11th Bomb Squadron. Donald’s second assignment was

Eglin AFB, FL working for Detachment 2, Air Force Operational Test and Evaluation

Center as a Deputy for Logistics and Test Director. While there he completed his

Master’s of Business Administration (MBA) degree; applied and was accepted into the

Operations Research master’s program at AFIT. Upon graduation, he will be assigned to

the USAFE Warrior Preparation Center at Einseidlerhof AB, Germany.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection
of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-
0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to
an penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

14-03-2003
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Sep 2002 - Mar 2003
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE
USING NEURAL NETWORKS FOR ESTIMATING CRUISE MISSILE
RELIABILITY

5c. PROGRAM ELEMENT
NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Hoffman, Donald, L., Captain, USAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN)
 2950 P Street, Building 640, WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/GOR/ENS/03-10
10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 ACC/DONO
 Attn: Mr. Al Montalvo
 205 Dodd Blvd; Suite 101 DSN: 574-6415
 LAFB VA 23655
e-mail: AL.MONTALVO@LANGLEY.AF.MIL

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
 ACC believes its current methodology for predicting the reliability of its Air Launched Cruise Missile (ALCM) and
Advanced Cruise Missile (ACM) stockpiles could be improved. They require a predictive model that delivers a realistic 24-
month projection of cruise missile reliability using existing data sources, collection methods and software. It should be
easily maintainable and developed to allow a layperson to enter updated data and receive an accurate reliability prediction.
The focus of this thesis is to improve upon free flight reliability, although the techniques could be applied to the captive carry
portion of the missile reliability equation also. The end product is the ALCM/ACM Reliability Estimation System
(AARES), a VBA-based model that meets all user criteria.
15. SUBJECT TERMS
 Cruise Missile, Neural Networks, Feed Forward Neural Nets, Radial Basis Function Network,
Logistic Regression, ALCM, ACM, Reliabilty
16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON

Stephen P. Chambal, Capt, USAF (ENS)
a. REPO

RT

U

b. ABSTRA
CT

U

c. THIS PAGE

U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

121
19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565, ext 4314; e-mail:
Stephen.Chambal@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

